Spaces:
Runtime error
Runtime error
MiladAbdollahi
commited on
Commit
•
0384ae1
1
Parent(s):
667f15d
Upload 6 files
Browse files- app.py +57 -0
- examples/Peugeot-207i (203).jpg +0 -0
- examples/Peykan (3).jpg +0 -0
- examples/Samand (87).jpg +0 -0
- model.py +21 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from model import create_model
|
6 |
+
from timeit import default_timer as timer
|
7 |
+
from typing import Tuple, Dict
|
8 |
+
|
9 |
+
|
10 |
+
# Loading saved weights
|
11 |
+
model, transforms = create_model(num_classes=13)
|
12 |
+
model_load_dict = torch.load('iran_cars_model_dict.pth', map_location=torch.device('cpu'))
|
13 |
+
model.load_state_dict(model_load_dict['state_dict'])
|
14 |
+
class_names = model_load_dict['class_names']
|
15 |
+
|
16 |
+
|
17 |
+
def predict(img):
|
18 |
+
"""Transforms and performs a prediction on img
|
19 |
+
and returns prediction and time taken.
|
20 |
+
"""
|
21 |
+
# starting the timer
|
22 |
+
start_time = timer()
|
23 |
+
|
24 |
+
# transforming the target image and adding a batch dimention
|
25 |
+
img = transforms(img).unsqueeze(0)
|
26 |
+
|
27 |
+
# putting model into evaluation mode
|
28 |
+
model.eval()
|
29 |
+
|
30 |
+
# turning on inference_mode in context manager
|
31 |
+
with torch.inference_mode():
|
32 |
+
pred_probs = torch.softmax(model(img), dim=1)
|
33 |
+
|
34 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
35 |
+
|
36 |
+
pred_time = round(timer() - start_time, 5)
|
37 |
+
|
38 |
+
return pred_labels_and_probs, pred_time
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
title = 'Iran Cars CoputerVision_V0 🚗'
|
43 |
+
description = 'an EfficientNetb0 CV model created by MiladAbdollahi'
|
44 |
+
article = 'github.com/Milad-Abdollahi'
|
45 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
46 |
+
|
47 |
+
demo = gr.Interface(fn=predict,
|
48 |
+
inputs=gr.Image(type='pil'),
|
49 |
+
outputs=[gr.Label(num_top_classes=13, label='Predictions'),
|
50 |
+
gr.Number(Label="Prediction time (s)")],
|
51 |
+
examples=example_list,
|
52 |
+
title=title,
|
53 |
+
description=description,
|
54 |
+
article=article
|
55 |
+
)
|
56 |
+
|
57 |
+
demo.launch(debug=False, share=True)
|
examples/Peugeot-207i (203).jpg
ADDED
examples/Peykan (3).jpg
ADDED
examples/Samand (87).jpg
ADDED
model.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
device='cpu'
|
7 |
+
def create_model(num_classes: int=13):
|
8 |
+
weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT
|
9 |
+
transforms = weights.transforms()
|
10 |
+
model = torchvision.models.efficientnet_b0(weights=weights).to(device)
|
11 |
+
|
12 |
+
for param in model.features.parameters():
|
13 |
+
param.requires_grad = False
|
14 |
+
|
15 |
+
model.classifier = torch.nn.Sequential(
|
16 |
+
torch.nn.Dropout(p=0.2, inplace=True),
|
17 |
+
torch.nn.Linear(in_features=1280, out_features=13, bias=True)
|
18 |
+
).to(device)
|
19 |
+
|
20 |
+
return model, transforms
|
21 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
torchvision==0.13.0
|
3 |
+
gradio==3.1.4
|