import gradio as gr import os import torch from model import create_model from timeit import default_timer as timer from typing import Tuple, Dict # Loading saved weights model, transforms = create_model(num_classes=13) model_load_dict = torch.load('iran_cars_model_dict.pth', map_location=torch.device('cpu')) model.load_state_dict(model_load_dict['state_dict']) class_names = model_load_dict['class_names'] def predict(img): """Transforms and performs a prediction on img and returns prediction and time taken. """ # starting the timer start_time = timer() # transforming the target image and adding a batch dimention img = transforms(img).unsqueeze(0) # putting model into evaluation mode model.eval() # turning on inference_mode in context manager with torch.inference_mode(): pred_probs = torch.softmax(model(img), dim=1) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} pred_time = round(timer() - start_time, 5) return pred_labels_and_probs, pred_time title = 'Iran Cars ComputerVision_V0 🚗' description = 'an EfficientNetb0 CV model created by MiladAbdollahi' article = 'github.com/Milad-Abdollahi' example_list = [["examples/" + example] for example in os.listdir("examples")] demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes=13, label='Predictions'), gr.Number(Label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article ) demo.launch()