Spaces:
Sleeping
Sleeping
diogovelho
commited on
Commit
•
64aee40
0
Parent(s):
Duplicate from MinderaLabs/TL_GPT4
Browse files- .gitattributes +35 -0
- README.md +13 -0
- agents/check_agent.py +97 -0
- agents/gather_agent.py +92 -0
- agents/planner_agent.py +84 -0
- agents/response_agent.py +99 -0
- app.py +173 -0
- gather_details.py +155 -0
- gather_details_fewshots.py +155 -0
- get_map.py +159 -0
- main.py +52 -0
- requirements.txt +7 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: TL GPT4
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.35.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: MinderaLabs/TL_GPT4
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
agents/check_agent.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
|
4 |
+
import openai
|
5 |
+
import chromadb
|
6 |
+
import langchain
|
7 |
+
|
8 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.text_splitter import TokenTextSplitter
|
11 |
+
from langchain.llms import OpenAI
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.chains import ChatVectorDBChain
|
14 |
+
from langchain.document_loaders import GutenbergLoader
|
15 |
+
|
16 |
+
from langchain.embeddings import LlamaCppEmbeddings
|
17 |
+
from langchain.llms import LlamaCpp
|
18 |
+
|
19 |
+
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
|
20 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
|
21 |
+
from langchain.llms import OpenAI
|
22 |
+
from langchain.chains import LLMChain
|
23 |
+
from langchain.chains import SimpleSequentialChain
|
24 |
+
|
25 |
+
from langchain.output_parsers import PydanticOutputParser
|
26 |
+
from pydantic import BaseModel, Field, validator
|
27 |
+
from typing import List, Dict
|
28 |
+
|
29 |
+
# class AnswerTemplate(BaseModel):
|
30 |
+
# isComplete: bool = Field(description="Is the input complete?")
|
31 |
+
# answer: str = Field(description="""If the answer to 'isComplete' is true leave this empty, else respond to user's last message in a cordial manner and then ask the user for the missing information. Just one question.""")
|
32 |
+
|
33 |
+
class AnswerTemplate(BaseModel):
|
34 |
+
isComplete: bool = Field(description="Is the input complete?")
|
35 |
+
|
36 |
+
class Check_Agent():
|
37 |
+
def __init__(self):
|
38 |
+
|
39 |
+
self.model_name = "gpt-4"
|
40 |
+
self.model = OpenAI(model_name=self.model_name, temperature=0)
|
41 |
+
|
42 |
+
self.output_parser = PydanticOutputParser(pydantic_object=AnswerTemplate)
|
43 |
+
self.format_instructions = self.output_parser.get_format_instructions()
|
44 |
+
|
45 |
+
# self.prompt = PromptTemplate(
|
46 |
+
# template="""\
|
47 |
+
# ### Instruction
|
48 |
+
# You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
49 |
+
# As a smart itinerary planner with extensive knowledge of places around the
|
50 |
+
# world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
51 |
+
# their message.
|
52 |
+
# ### Your task
|
53 |
+
# Is this input complete? If not, what is missing?
|
54 |
+
# ### If something is missing then ask for the missing information.
|
55 |
+
# Don't ask more then one question.
|
56 |
+
# Ask just one of the following:
|
57 |
+
# If 'type' is empty then ask the user what type of the trip are you planning and with whom are you travelling?;
|
58 |
+
# If 'where' is empty then ask the user where is they going to travel to?;
|
59 |
+
# If 'start_date' is empty then ask the user what is the start date?;
|
60 |
+
# If 'end_date' is empty then ask the user what is the end date?;
|
61 |
+
# If 'time_constrains' is empty then ask the user if is there any time constrains that should be considered?;
|
62 |
+
# If 'preferences' is empty then ask the user if they have thought about any activities you want to do while you're there?;
|
63 |
+
# If 'conditions' is empty then ask the user if they have any special medical condition?;
|
64 |
+
# If 'dist_range' is empty then ask the user what is the distance range you prefer for your ativities? \n### Input: {input}
|
65 |
+
# \n### Response: {format_instructions}
|
66 |
+
# """,
|
67 |
+
# input_variables=["input", "format_instructions"]
|
68 |
+
# )
|
69 |
+
|
70 |
+
self.prompt = PromptTemplate(
|
71 |
+
template="""\
|
72 |
+
### Instruction
|
73 |
+
You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
74 |
+
As a smart itinerary planner with extensive knowledge of places around the
|
75 |
+
world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
76 |
+
their message.
|
77 |
+
### Your task
|
78 |
+
This input is a resume of what the user wants to do. From this you have to be able to retrieve all the following information:
|
79 |
+
"Where is the trip to", "Start and end dates for the trip", "Is there any time constrain", "activity preferences",
|
80 |
+
"Is there any medical condition" and "Is there a maximum distance range in which the activities have to be".
|
81 |
+
Is this input complete? Does it have all the information mention before or is it missing something? If it's not complete, what is missing?
|
82 |
+
### If something is missing then ask for the missing information.
|
83 |
+
The user don't like give much information at once. So try to minimize the quantity of information that you ask for in your response.
|
84 |
+
### Input: {input}
|
85 |
+
### Response: {format_instructions}
|
86 |
+
""",
|
87 |
+
input_variables=["input", "format_instructions"]
|
88 |
+
)
|
89 |
+
|
90 |
+
def format_prompt(self, input):
|
91 |
+
return self.prompt.format_prompt(input=input, format_instructions=self.format_instructions)
|
92 |
+
return self.prompt.format_prompt(input=input)
|
93 |
+
|
94 |
+
def get_parsed_result(self, input):
|
95 |
+
result= self.model(input.to_string())
|
96 |
+
parsed_result = self.output_parser.parse(result)
|
97 |
+
return parsed_result.isComplete
|
agents/gather_agent.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
|
4 |
+
import openai
|
5 |
+
import chromadb
|
6 |
+
import langchain
|
7 |
+
|
8 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.text_splitter import TokenTextSplitter
|
11 |
+
from langchain.llms import OpenAI
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.chains import ChatVectorDBChain
|
14 |
+
from langchain.document_loaders import GutenbergLoader
|
15 |
+
|
16 |
+
from langchain.embeddings import LlamaCppEmbeddings
|
17 |
+
from langchain.llms import LlamaCpp
|
18 |
+
|
19 |
+
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
|
20 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
|
21 |
+
from langchain.llms import OpenAI
|
22 |
+
from langchain.chains import LLMChain
|
23 |
+
from langchain.chains import SimpleSequentialChain
|
24 |
+
|
25 |
+
from langchain.output_parsers import PydanticOutputParser
|
26 |
+
from pydantic import BaseModel, Field, validator
|
27 |
+
from typing import List, Dict
|
28 |
+
|
29 |
+
# class AnswerTemplate(BaseModel):
|
30 |
+
# type: List[str] = Field(description="What is the type of the trip: business, family, vactions. And with whom are you travelling? If can't anwser then leave it empty")
|
31 |
+
# where: str = Field(description="Where is the user going? If can't anwser then leave it empty")
|
32 |
+
# start_date: str = Field(description="What is the start date? If can't anwser then leave it empty")
|
33 |
+
# end_date: str = Field(description="What is the end date? If can't anwser then leave it empty")
|
34 |
+
# time_constrains: str = Field(description="Is there any time constrains? If can't anwser then leave it empty")
|
35 |
+
# # dates: Dict[str, str] = Field(description="What are the importante dates and times? If can't anwser then leave it empty")
|
36 |
+
# preferences: List[str] = Field(description="What does the user want to visit? If can't anwser then leave it empty")
|
37 |
+
# conditions: str = Field(description="Does the user has any special medical condition? If can't anwser then leave it empty")
|
38 |
+
# dist_range: str = Field(description="Max distance from a place? If can't anwser then leave it empty")
|
39 |
+
# # missing: str = Field(description="Is any more information needed?")
|
40 |
+
|
41 |
+
class AnswerTemplate(BaseModel):
|
42 |
+
answer: str = Field(description="Response")
|
43 |
+
|
44 |
+
|
45 |
+
class Gather_Agent():
|
46 |
+
def __init__(self):
|
47 |
+
|
48 |
+
self.model_name = "gpt-4"
|
49 |
+
self.model = OpenAI(model_name=self.model_name, temperature=0)
|
50 |
+
|
51 |
+
self.output_parser = PydanticOutputParser(pydantic_object=AnswerTemplate)
|
52 |
+
self.format_instructions = self.output_parser.get_format_instructions()
|
53 |
+
|
54 |
+
# self.prompt = PromptTemplate(
|
55 |
+
# template="""\
|
56 |
+
# ### Instruction
|
57 |
+
# You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
58 |
+
# As a smart itinerary planner with extensive knowledge of places around the
|
59 |
+
# world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
60 |
+
# their message. Here is the history that you have so far: {history} \n### User: \n{input}
|
61 |
+
# \n### Response: {format_instructions}
|
62 |
+
# """,
|
63 |
+
# input_variables=["input", "history", "format_instructions"]
|
64 |
+
# )
|
65 |
+
|
66 |
+
self.prompt = PromptTemplate(
|
67 |
+
template="""\
|
68 |
+
### Instruction
|
69 |
+
You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
70 |
+
As a smart itinerary planner with extensive knowledge of places around the
|
71 |
+
world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
72 |
+
their message.
|
73 |
+
### Task
|
74 |
+
From the following history and user input you should be able to retrieve and resume all the following information:
|
75 |
+
Where is the trip to, start and end dates for the trip, is there any time constrain, activity preferences,
|
76 |
+
is there any medical condition and is there a maximum distance range in which the activities have to be.
|
77 |
+
### History
|
78 |
+
Here is the history that you have so far: {history}
|
79 |
+
### User: \n{input}
|
80 |
+
\n### Response:
|
81 |
+
""",
|
82 |
+
input_variables=["input", "history"]
|
83 |
+
)
|
84 |
+
|
85 |
+
def format_prompt(self, input, history):
|
86 |
+
# return self.prompt.format_prompt(history=history, input=input, format_instructions=self.format_instructions)
|
87 |
+
return self.prompt.format_prompt(input=input, history=history)
|
88 |
+
|
89 |
+
def get_parsed_result(self, input):
|
90 |
+
result = self.model(input.to_string())
|
91 |
+
# return self.output_parser.parse(result)
|
92 |
+
return result
|
agents/planner_agent.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
|
4 |
+
import openai
|
5 |
+
import chromadb
|
6 |
+
import langchain
|
7 |
+
|
8 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.text_splitter import TokenTextSplitter
|
11 |
+
from langchain.llms import OpenAI
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.chains import ChatVectorDBChain
|
14 |
+
from langchain.document_loaders import GutenbergLoader
|
15 |
+
|
16 |
+
from langchain.embeddings import LlamaCppEmbeddings
|
17 |
+
from langchain.llms import LlamaCpp
|
18 |
+
|
19 |
+
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
|
20 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
|
21 |
+
from langchain.llms import OpenAI
|
22 |
+
from langchain.chains import LLMChain
|
23 |
+
from langchain.chains import SimpleSequentialChain
|
24 |
+
|
25 |
+
from langchain.output_parsers import PydanticOutputParser
|
26 |
+
from pydantic import BaseModel, Field, validator
|
27 |
+
from typing import List, Dict
|
28 |
+
|
29 |
+
class GetPlacesTemplate(BaseModel):
|
30 |
+
answer: List[str] = Field(description="List of places and their adresses separated by ','")
|
31 |
+
|
32 |
+
|
33 |
+
class Planner_Agent():
|
34 |
+
def __init__(self):
|
35 |
+
|
36 |
+
self.model_name = "gpt-4"
|
37 |
+
self.model = OpenAI(model_name=self.model_name, temperature=0)
|
38 |
+
|
39 |
+
self.output_parser_places = PydanticOutputParser(pydantic_object=GetPlacesTemplate)
|
40 |
+
self.format_instructions_places = self.output_parser_places.get_format_instructions()
|
41 |
+
|
42 |
+
self.prompt = PromptTemplate(
|
43 |
+
template="""\
|
44 |
+
### Instruction
|
45 |
+
You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
46 |
+
As a smart itinerary planner with extensive knowledge of places around the
|
47 |
+
world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
48 |
+
their message. Create an itinerary that caters to the user's needs, making sure to name all activities,
|
49 |
+
restaurants, and attractions specifically. When creating the itinerary, also consider factors such as time
|
50 |
+
constraints and transportation options. Additionally, all attractions and restaurants listed in the itinerary
|
51 |
+
must exist and be named specifically. During subsequent revisions, the itinerary can be modified, while keeping
|
52 |
+
in mind the practicality of the itinerary. New place for each day. It's important to ensure that the number of
|
53 |
+
activities per day is appropriate, and if the user doesn't specify otherwise, the default itinerary length is
|
54 |
+
five days. The itinerary length should remain the same unless there is a change by the user's message. \n### User input to base itenerary on: \n{input}
|
55 |
+
### Response:
|
56 |
+
""",
|
57 |
+
input_variables=["input"]
|
58 |
+
# partial_variables={"format_instructions": format_instructions_gether}
|
59 |
+
)
|
60 |
+
|
61 |
+
self.prompt_to_get_places = PromptTemplate(
|
62 |
+
template="""\
|
63 |
+
### Instruction
|
64 |
+
You are a place retriever. From a given input you can creat a list of all the places referenced in it, as well as the adress of each location.
|
65 |
+
### Input: {input}
|
66 |
+
### Response: {format_instructions}
|
67 |
+
""",
|
68 |
+
input_variables=["input", "format_instructions"]
|
69 |
+
# partial_variables={"format_instructions": format_instructions_gether}
|
70 |
+
)
|
71 |
+
|
72 |
+
def format_prompt(self, input):
|
73 |
+
return self.prompt.format_prompt(input=input)
|
74 |
+
|
75 |
+
def get_itenerary(self, input):
|
76 |
+
return self.model(input.to_string())
|
77 |
+
|
78 |
+
def format_prompt_to_get_places(self, input):
|
79 |
+
return self.prompt_to_get_places.format_prompt(input=input, format_instructions=self.format_instructions_places)
|
80 |
+
|
81 |
+
def get_places_from_itenerary(self, itenerary):
|
82 |
+
result = self.model(itenerary.to_string())
|
83 |
+
parsed_result = self.output_parser_places.parse(result)
|
84 |
+
return parsed_result.answer
|
agents/response_agent.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
|
4 |
+
import openai
|
5 |
+
import chromadb
|
6 |
+
import langchain
|
7 |
+
|
8 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.text_splitter import TokenTextSplitter
|
11 |
+
from langchain.llms import OpenAI
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.chains import ChatVectorDBChain
|
14 |
+
from langchain.document_loaders import GutenbergLoader
|
15 |
+
|
16 |
+
from langchain.embeddings import LlamaCppEmbeddings
|
17 |
+
from langchain.llms import LlamaCpp
|
18 |
+
|
19 |
+
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
|
20 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
|
21 |
+
from langchain.llms import OpenAI
|
22 |
+
from langchain.chains import LLMChain
|
23 |
+
from langchain.chains import SimpleSequentialChain
|
24 |
+
|
25 |
+
from langchain.output_parsers import PydanticOutputParser
|
26 |
+
from pydantic import BaseModel, Field, validator
|
27 |
+
from typing import List, Dict
|
28 |
+
|
29 |
+
# class AnswerTemplate(BaseModel):
|
30 |
+
# isComplete: bool = Field(description="Is the input complete?")
|
31 |
+
# answer: str = Field(description="""If the answer to 'isComplete' is true leave this empty, else respond to user's last message in a cordial manner and then ask the user for the missing information. Just one question.""")
|
32 |
+
|
33 |
+
class AnswerTemplate(BaseModel):
|
34 |
+
# isComplete: bool = Field(description="Is the input complete?")
|
35 |
+
answer: str = Field(description="Question that you asked")
|
36 |
+
|
37 |
+
class Response_Agent():
|
38 |
+
def __init__(self):
|
39 |
+
|
40 |
+
self.model_name = "gpt-4"
|
41 |
+
self.model = OpenAI(model_name=self.model_name, temperature=0)
|
42 |
+
|
43 |
+
self.output_parser = PydanticOutputParser(pydantic_object=AnswerTemplate)
|
44 |
+
self.format_instructions = self.output_parser.get_format_instructions()
|
45 |
+
|
46 |
+
# self.prompt = PromptTemplate(
|
47 |
+
# template="""\
|
48 |
+
# ### Instruction
|
49 |
+
# You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
50 |
+
# As a smart itinerary planner with extensive knowledge of places around the
|
51 |
+
# world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
52 |
+
# their message.
|
53 |
+
# ### Your task
|
54 |
+
# Is this input complete? If not, what is missing?
|
55 |
+
# ### If something is missing then ask for the missing information.
|
56 |
+
# Don't ask more then one question.
|
57 |
+
# Ask just one of the following:
|
58 |
+
# If 'type' is empty then ask the user what type of the trip are you planning and with whom are you travelling?;
|
59 |
+
# If 'where' is empty then ask the user where is they going to travel to?;
|
60 |
+
# If 'start_date' is empty then ask the user what is the start date?;
|
61 |
+
# If 'end_date' is empty then ask the user what is the end date?;
|
62 |
+
# If 'time_constrains' is empty then ask the user if is there any time constrains that should be considered?;
|
63 |
+
# If 'preferences' is empty then ask the user if they have thought about any activities you want to do while you're there?;
|
64 |
+
# If 'conditions' is empty then ask the user if they have any special medical condition?;
|
65 |
+
# If 'dist_range' is empty then ask the user what is the distance range you prefer for your ativities? \n### Input: {input}
|
66 |
+
# \n### Response: {format_instructions}
|
67 |
+
# """,
|
68 |
+
# input_variables=["input", "format_instructions"]
|
69 |
+
# )
|
70 |
+
|
71 |
+
self.prompt = PromptTemplate(
|
72 |
+
template="""\
|
73 |
+
### Instruction
|
74 |
+
You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
75 |
+
As a smart itinerary planner with extensive knowledge of places around the
|
76 |
+
world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
77 |
+
their message.
|
78 |
+
### Your task
|
79 |
+
This input is a resume of what the user wants to do. From this you have to be able to retrieve all the following information:
|
80 |
+
"Where is the trip to", "Start and end dates for the trip", "Is there any time constrain that you should be aware of", "activity preferences",
|
81 |
+
"Is there any medical condition" and "Is there a maximum distance range in which the activities have to be".
|
82 |
+
### If something is missing then ask for the missing information.
|
83 |
+
The user don't like give much information at once. So try to minimize the quantity of information that you ask for in your response.
|
84 |
+
Ask at maximum for information for two of the questions.
|
85 |
+
### Input: {input}
|
86 |
+
### Response: {format_instructions}
|
87 |
+
""",
|
88 |
+
input_variables=["input", "format_instructions"]
|
89 |
+
)
|
90 |
+
# Is this input complete? Does it have all the information mention before or is it missing something? If it's not complete, what is missing?
|
91 |
+
|
92 |
+
def format_prompt(self, input):
|
93 |
+
return self.prompt.format_prompt(input=input, format_instructions=self.format_instructions)
|
94 |
+
# return self.prompt.format_prompt(input=input)
|
95 |
+
|
96 |
+
def get_parsed_result(self, input):
|
97 |
+
result= self.model(input.to_string())
|
98 |
+
parsed_result = self.output_parser.parse(result)
|
99 |
+
return parsed_result.answer
|
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from gradio.themes import Size, GoogleFont
|
4 |
+
|
5 |
+
from agents.gather_agent import Gather_Agent
|
6 |
+
from agents.check_agent import Check_Agent
|
7 |
+
from agents.response_agent import Response_Agent
|
8 |
+
from agents.planner_agent import Planner_Agent
|
9 |
+
|
10 |
+
import get_map
|
11 |
+
|
12 |
+
# Create custom Color objects for our primary, secondary, and neutral colors
|
13 |
+
primary_color = gr.themes.colors.green
|
14 |
+
secondary_color = gr.themes.colors.amber
|
15 |
+
neutral_color = gr.themes.colors.stone # Assuming black for text
|
16 |
+
# Set the sizes
|
17 |
+
spacing_size = gr.themes.sizes.spacing_md
|
18 |
+
radius_size = gr.themes.sizes.radius_md
|
19 |
+
text_size = gr.themes.sizes.text_md
|
20 |
+
# Set the fonts
|
21 |
+
font = GoogleFont("Source Sans Pro")
|
22 |
+
font_mono = GoogleFont("IBM Plex Mono")
|
23 |
+
# Create the theme
|
24 |
+
theme = gr.themes.Base(
|
25 |
+
primary_hue=primary_color,
|
26 |
+
secondary_hue=secondary_color,
|
27 |
+
neutral_hue=neutral_color,
|
28 |
+
spacing_size=spacing_size,
|
29 |
+
radius_size=radius_size,
|
30 |
+
text_size=text_size,
|
31 |
+
font=font,
|
32 |
+
font_mono=font_mono
|
33 |
+
)
|
34 |
+
|
35 |
+
gather_agent = Gather_Agent()
|
36 |
+
check_agent = Check_Agent()
|
37 |
+
response_agent = Response_Agent()
|
38 |
+
planner_agent = Planner_Agent()
|
39 |
+
|
40 |
+
def send_message(user_input, chat_history):
|
41 |
+
isComplete = False
|
42 |
+
helper_anwser = ""
|
43 |
+
|
44 |
+
_input_gather = gather_agent.format_prompt(history=chat_history, input=user_input)
|
45 |
+
parsed_result_gather = gather_agent.get_parsed_result(_input_gather)
|
46 |
+
|
47 |
+
_input_check = check_agent.format_prompt(input=parsed_result_gather)
|
48 |
+
isComplete = check_agent.get_parsed_result(_input_check)
|
49 |
+
|
50 |
+
if isComplete == False:
|
51 |
+
_input_response = response_agent.format_prompt(input=parsed_result_gather)
|
52 |
+
helper_anwser = response_agent.get_parsed_result(_input_response)
|
53 |
+
|
54 |
+
# _input_check = check_agent.format_prompt(input=parsed_result_gather)
|
55 |
+
# isComplete, helper_anwser = check_agent.get_parsed_result(_input_check)
|
56 |
+
|
57 |
+
return isComplete, helper_anwser, parsed_result_gather
|
58 |
+
|
59 |
+
def get_itenerary(parsed_result_gather):
|
60 |
+
_input_planner = planner_agent.format_prompt(parsed_result_gather)
|
61 |
+
return planner_agent.get_itenerary(_input_planner)
|
62 |
+
|
63 |
+
def get_itenerary_places(itenerary):
|
64 |
+
_input_places = planner_agent.format_prompt_to_get_places(itenerary)
|
65 |
+
return planner_agent.get_places_from_itenerary(_input_places)
|
66 |
+
|
67 |
+
# isComplete = False
|
68 |
+
# chat_history = ""
|
69 |
+
|
70 |
+
# helper_anwser = "Hello, can you tell me your trip details and constraints so I can give you great recomendations?"
|
71 |
+
# user_input = input("Helper: " + helper_anwser + "\nUser: ")
|
72 |
+
|
73 |
+
with gr.Blocks(theme=theme, title="TrainLine") as demo:
|
74 |
+
gr.Markdown(
|
75 |
+
"""
|
76 |
+
<div style="vertical-align: middle">
|
77 |
+
<div style="float: left">
|
78 |
+
<img src="https://static.trainlinecontent.com/content/vul/logos/trainline-mint.svg" alt=""
|
79 |
+
width="120" height="120">
|
80 |
+
</div>
|
81 |
+
</div>
|
82 |
+
""")
|
83 |
+
|
84 |
+
helper_anwser = "Hello, can you tell me your trip details and constraints so I can give you great recomendations?"
|
85 |
+
with gr.TabItem("Travel Companion"):
|
86 |
+
chatbot = gr.Chatbot(value=[[None, helper_anwser]])
|
87 |
+
user_input = gr.Textbox()
|
88 |
+
gr.Examples([
|
89 |
+
"I want to go to Rome. can you recommend a site seeing tour for one day?",
|
90 |
+
"I like to walk a lot and i prefer to visit fine arts museums",
|
91 |
+
"Porto for 3 days. i will arrive on monday and leave on thursday. i can only visit places after 5pm so be "
|
92 |
+
"sure i can visit those places",
|
93 |
+
"I would like to plan a trip to Europe with my family of four. We want to visit Paris, Rome, and Madrid in "
|
94 |
+
"10 days. Can you suggest an itinerary that includes transportation and accommodations? "
|
95 |
+
"Also, please provide information on the best restaurants in each city for a budget of $50 per person per meal."
|
96 |
+
], user_input)
|
97 |
+
with gr.TabItem("Map"):
|
98 |
+
map = gr.Plot(visible=True).style()
|
99 |
+
result_df = gr.Dataframe(type="pandas", visible=True)
|
100 |
+
isComplete = False
|
101 |
+
history = ""
|
102 |
+
locations = []
|
103 |
+
|
104 |
+
def user(user_message, history):
|
105 |
+
print(user_message, history)
|
106 |
+
return gr.update(value="", interactive=False), history + [[user_message, None]]
|
107 |
+
|
108 |
+
# def bot(chat_history):
|
109 |
+
# print(chat_history)
|
110 |
+
# # Create history
|
111 |
+
# history = ""
|
112 |
+
# for i in range(len(chat_history)-1):
|
113 |
+
# history += "User: " + chat_history[i][0] + "\nHelper: " + chat_history[i][1] + "\n"
|
114 |
+
# history += "User: " + chat_history[-1][0]
|
115 |
+
|
116 |
+
# # isComplete, helper_anwser, data_collected = send_message(message, history)
|
117 |
+
# # if isComplete == True:
|
118 |
+
# # helper_anwser = get_itenerary(data_collected)
|
119 |
+
# # chat_history.append((message, helper_anwser))
|
120 |
+
# return "", chat_history
|
121 |
+
|
122 |
+
def respond(chat_history):
|
123 |
+
print(chat_history)
|
124 |
+
# Create history
|
125 |
+
history = ""
|
126 |
+
for i in range(1, len(chat_history) - 1):
|
127 |
+
history += "User: " + chat_history[i][0] + "\nHelper: " + chat_history[i][1] + "\n"
|
128 |
+
|
129 |
+
message = chat_history[-1][0]
|
130 |
+
print(history)
|
131 |
+
print(message)
|
132 |
+
isComplete, helper_anwser, data_collected = send_message(message, history)
|
133 |
+
|
134 |
+
chat_history.pop(-1)
|
135 |
+
|
136 |
+
if isComplete == True:
|
137 |
+
itenerary = get_itenerary(data_collected)
|
138 |
+
locations = get_itenerary_places(itenerary)
|
139 |
+
helper_anwser = itenerary + "\nList of places with adresses: " + str(locations)
|
140 |
+
map, result_df = get_map.filter_map(locations)
|
141 |
+
chat_history.append((message, helper_anwser))
|
142 |
+
return chat_history, map, result_df
|
143 |
+
|
144 |
+
chat_history.append((message, helper_anwser))
|
145 |
+
return chat_history, None, None
|
146 |
+
|
147 |
+
# user_input.submit(respond, [user_input, chatbot], [user_input, chatbot])
|
148 |
+
|
149 |
+
response = user_input.submit(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
|
150 |
+
respond, chatbot, [chatbot, map, result_df]
|
151 |
+
)
|
152 |
+
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
153 |
+
|
154 |
+
# if map != None:
|
155 |
+
# map.update(visible=True)
|
156 |
+
# result_df.update(visible=True)
|
157 |
+
|
158 |
+
demo.launch(auth=( os.environ["USER"],os.environ["PASSWORD"]))
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
# while isComplete == False:
|
163 |
+
|
164 |
+
# isComplete, helper_anwser, data_collected = main.send_message(user_input, chat_history)
|
165 |
+
|
166 |
+
# if isComplete == False:
|
167 |
+
# chat_history += "User: " + user_input + "\nHelper: " + helper_anwser + "\n"
|
168 |
+
# user_input = input("Helper: " + helper_anwser + "\nUser: ")
|
169 |
+
|
170 |
+
# itenerary_response = main.get_itenerary(data_collected)
|
171 |
+
|
172 |
+
|
173 |
+
# I would like to go to paris, from 12th of july to 15th of July, I want to visit museums, eat at local restaurants and visit the louvre on my first day. My son is allergic to peanuts, and I like to sleep in, so please don't book anything before 11am. I would also like to not get further then 2km from the city's center.
|
gather_details.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
|
4 |
+
import openai
|
5 |
+
import chromadb
|
6 |
+
import langchain
|
7 |
+
|
8 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.text_splitter import TokenTextSplitter
|
11 |
+
from langchain.llms import OpenAI
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.chains import ChatVectorDBChain
|
14 |
+
from langchain.document_loaders import GutenbergLoader
|
15 |
+
|
16 |
+
from langchain.embeddings import LlamaCppEmbeddings
|
17 |
+
from langchain.llms import LlamaCpp
|
18 |
+
|
19 |
+
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
|
20 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
|
21 |
+
from langchain.llms import OpenAI
|
22 |
+
from langchain.chains import LLMChain
|
23 |
+
from langchain.chains import SimpleSequentialChain
|
24 |
+
|
25 |
+
from langchain.output_parsers import PydanticOutputParser
|
26 |
+
from pydantic import BaseModel, Field, validator
|
27 |
+
from typing import List, Dict
|
28 |
+
|
29 |
+
class AnswerTemplate(BaseModel):
|
30 |
+
type: List[str] = Field(description="What is the type of the trip: business, family, vactions. And with whom are you travelling? If can't anwser then leave it empty")
|
31 |
+
where: str = Field(description="Where is the user going? If can't anwser then leave it empty")
|
32 |
+
start_date: str = Field(description="What is the start date? If can't anwser then leave it empty")
|
33 |
+
end_date: str = Field(description="What is the end date? If can't anwser then leave it empty")
|
34 |
+
time_constrains: str = Field(description="Is there any time constrains? If can't anwser then leave it empty")
|
35 |
+
# dates: Dict[str, str] = Field(description="What are the importante dates and times? If can't anwser then leave it empty")
|
36 |
+
preferences: List[str] = Field(description="What does the user want to visit? If can't anwser then leave it empty")
|
37 |
+
conditions: str = Field(description="Does the user has any special medical condition? If can't anwser then leave it empty")
|
38 |
+
dist_range: str = Field(description="Max distance from a place? If can't anwser then leave it empty")
|
39 |
+
# missing: str = Field(description="Is any more information needed?")
|
40 |
+
|
41 |
+
class CheckAnswerTemplate(BaseModel):
|
42 |
+
isComplete: bool = Field(description="Is the input complete?")
|
43 |
+
# missing: str = Field(description="If the answer to the last question is false, then what is missing?")
|
44 |
+
answer: str = Field(description="""If the answer to 'isComplete' is true leave this empty, else complete this by giving a nice compliment to the user's choices and asking the user for the missing information. Just one question.""")
|
45 |
+
|
46 |
+
|
47 |
+
# os.environ["OPENAI_API_KEY"] = "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"
|
48 |
+
|
49 |
+
|
50 |
+
model_name = "gpt-4"
|
51 |
+
# model_name = "gpt-3.5-turbo"
|
52 |
+
|
53 |
+
chat_history = ""
|
54 |
+
|
55 |
+
model = OpenAI(model_name=model_name, temperature=0)
|
56 |
+
|
57 |
+
output_parser_gather = PydanticOutputParser(pydantic_object=AnswerTemplate)
|
58 |
+
format_instructions_gather = output_parser_gather.get_format_instructions()
|
59 |
+
|
60 |
+
output_parser_check = PydanticOutputParser(pydantic_object=CheckAnswerTemplate)
|
61 |
+
format_instructions_check = output_parser_check.get_format_instructions()
|
62 |
+
|
63 |
+
helper_anwser = "Hello, can you tell me your trip details and constraints so I can give you great recomendations?"
|
64 |
+
|
65 |
+
user_input = input("Helper: " + helper_anwser + "\nUser: ")
|
66 |
+
|
67 |
+
# output_parser_2 = PydanticOutputParser(pydantic_object=AnswerTemplate_2)
|
68 |
+
# format_instructions_2 = output_parser_2.get_format_instructions()
|
69 |
+
|
70 |
+
# prompt_gather = PromptTemplate(
|
71 |
+
# template="""\
|
72 |
+
# ### Instruction
|
73 |
+
# You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
74 |
+
# As a smart itinerary planner with extensive knowledge of places around the
|
75 |
+
# world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
76 |
+
# their message. Create an itinerary that caters to the user's needs, making sure to name all activities,
|
77 |
+
# restaurants, and attractions specifically. When creating the itinerary, also consider factors such as time
|
78 |
+
# constraints and transportation options. Additionally, all attractions and restaurants listed in the itinerary
|
79 |
+
# must exist and be named specifically. During subsequent revisions, the itinerary can be modified, while keeping
|
80 |
+
# in mind the practicality of the itinerary. New place for each day. It's important to ensure that the number of
|
81 |
+
# activities per day is appropriate, and if the user doesn't specify otherwise, the default itinerary length is
|
82 |
+
# five days. The itinerary length should remain the same unless there is a change by the user's message. Here is the history that you have so far: {history} \n### User: \n{input}
|
83 |
+
# \n### Response: {format_instructions}
|
84 |
+
# """,
|
85 |
+
# input_variables=["input", "history", "format_instructions"]
|
86 |
+
# # partial_variables={"format_instructions": format_instructions_gather}
|
87 |
+
# )
|
88 |
+
|
89 |
+
prompt_gather = PromptTemplate(
|
90 |
+
template="""\
|
91 |
+
### Instruction
|
92 |
+
You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
93 |
+
As a smart itinerary planner with extensive knowledge of places around the
|
94 |
+
world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
95 |
+
their message. Here is the history that you have so far: {history} \n### User: \n{input}
|
96 |
+
\n### Response: {format_instructions}
|
97 |
+
""",
|
98 |
+
input_variables=["input", "history", "format_instructions"]
|
99 |
+
# partial_variables={"format_instructions": format_instructions_gather}
|
100 |
+
)
|
101 |
+
|
102 |
+
prompt_check = PromptTemplate(
|
103 |
+
template="""\
|
104 |
+
### Instruction
|
105 |
+
Is this input complete? If not, what is missing?
|
106 |
+
### Important: Give a nice compliment to the user's choices: {user_input}
|
107 |
+
### Then ask for the missing information.
|
108 |
+
Don't ask more then one question.
|
109 |
+
Ask just one of the following:
|
110 |
+
If 'type' is empty then ask the user what is the objective of the trip and with whom are you travelling?;
|
111 |
+
If 'where' is empty then ask the user where is they going to travel to?;
|
112 |
+
If 'start_date' is empty then ask the user what is the start date?;
|
113 |
+
If 'end_date' is empty then ask the user what is the end date?;
|
114 |
+
If 'time_constrains' is empty then ask the user if is there any time constrains that should be considered?;
|
115 |
+
If 'preferences' is empty then ask the user if they have thought about any activities you want to do while you're there?;
|
116 |
+
If 'conditions' is empty then ask the user if they have any special medical condition?;
|
117 |
+
If 'dist_range' is empty then ask the user what is the distance range you prefer for your ativities? \n### Input: {input}
|
118 |
+
\n### Response: {format_instructions}
|
119 |
+
""",
|
120 |
+
input_variables=["input", "user_input", "format_instructions"]
|
121 |
+
# partial_variables={"format_instructions": format_instructions_check}
|
122 |
+
# f 'dates' is empty then ask the user what are the importante dates and times?;
|
123 |
+
)
|
124 |
+
|
125 |
+
isComplete = False
|
126 |
+
|
127 |
+
while isComplete == False:
|
128 |
+
|
129 |
+
_input_gather = prompt_gather.format_prompt(history=chat_history, input=user_input, format_instructions=format_instructions_gather)
|
130 |
+
|
131 |
+
# chain_gather = LLMChain(llm=model, prompt=prompt_gather)
|
132 |
+
# chain_check = LLMChain(llm=model, prompt=prompt_check)
|
133 |
+
|
134 |
+
# overall_chain = SimpleSequentialChain(chains=[chain_gather, chain_check], verbose=True)
|
135 |
+
|
136 |
+
result_gather = model(_input_gather.to_string())
|
137 |
+
parsed_result_gather = output_parser_gather.parse(result_gather)
|
138 |
+
print(parsed_result_gather)
|
139 |
+
|
140 |
+
_input_check = prompt_check.format_prompt(input=parsed_result_gather, user_input="\nHelper: " + helper_anwser + "\nUser: " + user_input, format_instructions=format_instructions_check)
|
141 |
+
result_check = model(_input_check.to_string())
|
142 |
+
parsed_result_check = output_parser_check.parse(result_check)
|
143 |
+
# print(parsed_result_check)
|
144 |
+
|
145 |
+
isComplete = parsed_result_check.isComplete
|
146 |
+
helper_anwser = parsed_result_check.answer
|
147 |
+
|
148 |
+
if isComplete == False:
|
149 |
+
chat_history += "User: " + user_input + "\nHelper: " + helper_anwser + "\n"
|
150 |
+
user_input = input("Helper: " + helper_anwser + "\nUser: ")
|
151 |
+
|
152 |
+
|
153 |
+
# print(overall_chain.run(input=user_input))
|
154 |
+
|
155 |
+
print(parsed_result_gather)
|
gather_details_fewshots.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.text_splitter import TokenTextSplitter
|
6 |
+
from langchain.llms import OpenAI, LlamaCpp
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
from langchain.chains import ChatVectorDBChain
|
9 |
+
|
10 |
+
from langchain.embeddings import LlamaCppEmbeddings
|
11 |
+
|
12 |
+
from langchain.output_parsers import StructuredOutputParser, ResponseSchema, PydanticOutputParser
|
13 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, FewShotPromptTemplate
|
14 |
+
from langchain.chains import LLMChain
|
15 |
+
from langchain.chains import SimpleSequentialChain
|
16 |
+
|
17 |
+
from pydantic import BaseModel, Field, validator
|
18 |
+
from typing import List, Dict
|
19 |
+
|
20 |
+
class AnswerTemplate(BaseModel):
|
21 |
+
type: List[str] = Field(description="What is the type of the trip: business, family, vactions. And with whom are you travelling? If can't anwser them leave it empty")
|
22 |
+
dates: Dict[str, str] = Field(description="What are the importante dates and times? If can't anwser them leave it empty")
|
23 |
+
preferences: List[str] = Field(description="What are the user's preferences? If can't anwser them leave it empty")
|
24 |
+
conditions: str = Field(description="Does the user has any special medical condition? If can't anwser them leave it empty.")
|
25 |
+
dist_range: str = Field(description="Max distance from a place? If can't anwser them leave it empty")
|
26 |
+
|
27 |
+
class CheckAnswerTemplate(BaseModel):
|
28 |
+
isComplete: bool = Field(description="Is the input complete?")
|
29 |
+
answer: str = Field(description="""If the answer to 'isComplete' is true leave this empty, else complete this by asking the user for the missing information. Just one question.""")
|
30 |
+
|
31 |
+
|
32 |
+
# os.environ["OPENAI_API_KEY"] = "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"
|
33 |
+
os.environ["OPENAI_API_KEY"] = "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" # Mindera's Key
|
34 |
+
embeddings = OpenAIEmbeddings()
|
35 |
+
# embeddings = LlamaCppEmbeddings()
|
36 |
+
|
37 |
+
persist_directory="../../../chroma/"
|
38 |
+
|
39 |
+
# model_name = "gpt-4"
|
40 |
+
model_name = "gpt-3.5-turbo"
|
41 |
+
|
42 |
+
chat_history = ""
|
43 |
+
|
44 |
+
model = OpenAI(model_name=model_name, temperature=0)
|
45 |
+
|
46 |
+
output_parser_gather = PydanticOutputParser(pydantic_object=AnswerTemplate)
|
47 |
+
format_instructions_gather = output_parser_gather.get_format_instructions()
|
48 |
+
|
49 |
+
output_parser_check = PydanticOutputParser(pydantic_object=CheckAnswerTemplate)
|
50 |
+
format_instructions_check = output_parser_check.get_format_instructions()
|
51 |
+
|
52 |
+
user_input = input("Helper: Hello, can you tell me your trip details and constraints so I can give you great recomendations?\nUser: ")
|
53 |
+
|
54 |
+
examples = [
|
55 |
+
{"input": "i am travelling from 12 of july to 15 of july", "response": "start date: 12th july, end date: 15th july"},
|
56 |
+
{"input": "I like museums and cafes", "response": "preferences: museums and cafes"},
|
57 |
+
{"input": "Maximum 5km from the city's stadium", "response": "dist_range: 5km from the city's stadium"},
|
58 |
+
{"input": "It's a business trip and i am travelling alone", "response": "type: [business, alone]"}
|
59 |
+
]
|
60 |
+
|
61 |
+
example_formatter_template = """User: {input}
|
62 |
+
Response: {response}
|
63 |
+
"""
|
64 |
+
|
65 |
+
example_prompt = PromptTemplate(
|
66 |
+
input_variables=["input", "response"],
|
67 |
+
template=example_formatter_template,
|
68 |
+
)
|
69 |
+
|
70 |
+
few_shot_prompt = FewShotPromptTemplate(
|
71 |
+
# These are the examples we want to insert into the prompt.
|
72 |
+
examples=examples,
|
73 |
+
# This is how we want to format the examples when we insert them into the prompt.
|
74 |
+
example_prompt=example_prompt,
|
75 |
+
# The prefix is some text that goes before the examples in the prompt.
|
76 |
+
# Usually, this consists of intructions.
|
77 |
+
prefix="""### Instruction
|
78 |
+
You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
79 |
+
As a smart itinerary planner with extensive knowledge of places around the
|
80 |
+
world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
81 |
+
their message. Here is the history that you have so far: {history} \n###""",
|
82 |
+
# The suffix is some text that goes after the examples in the prompt.
|
83 |
+
# Usually, this is where the user input will go
|
84 |
+
suffix="""\n### User: {input}
|
85 |
+
\n### Response: {format_instructions}""",
|
86 |
+
# The input variables are the variables that the overall prompt expects.
|
87 |
+
input_variables=["input", "history", "format_instructions"],
|
88 |
+
# The example_separator is the string we will use to join the prefix, examples, and suffix togather with.
|
89 |
+
example_separator="\n",
|
90 |
+
)
|
91 |
+
|
92 |
+
prompt_gather = PromptTemplate(
|
93 |
+
template="""\
|
94 |
+
### Instruction
|
95 |
+
You are Trainline Mate an helpful assistant that plans tours for people at trainline.com.
|
96 |
+
As a smart itinerary planner with extensive knowledge of places around the
|
97 |
+
world, your task is to determine the user's travel destinations and any specific interests or preferences from
|
98 |
+
their message. Here is the history that you have so far: {history} \n### User: {input}
|
99 |
+
\n### Response: {format_instructions}
|
100 |
+
""",
|
101 |
+
input_variables=["input", "history", "format_instructions"]
|
102 |
+
# partial_variables={"format_instructions": format_instructions_gather}
|
103 |
+
)
|
104 |
+
|
105 |
+
prompt_check = PromptTemplate(
|
106 |
+
template="""\
|
107 |
+
### Instruction
|
108 |
+
Is this input complete? If not, what is missing? If it's the first time responding to the user then thank the user for the details
|
109 |
+
provided and then ask for the missing information. Don't ask more then one question.
|
110 |
+
Ask just one of the following:
|
111 |
+
If 'type' is empty then ask the user what is the objective of the trip and with whom are you travelling;
|
112 |
+
If 'dates' is empty then ask the user what are the importante dates and times;
|
113 |
+
If 'preferences' is empty then ask the user what are the user's preferences;
|
114 |
+
If 'conditions' is empty then ask the user if they have any special medical condition;
|
115 |
+
If 'dist_range' is empty then ask the user what is the distance range you prefer for your accommodations and activities? \n### Input: {input}
|
116 |
+
\n### Response: {format_instructions}
|
117 |
+
""",
|
118 |
+
input_variables=["input", "format_instructions"]
|
119 |
+
# partial_variables={"format_instructions": format_instructions_check}
|
120 |
+
)
|
121 |
+
|
122 |
+
examples_gather = [
|
123 |
+
{"input": "happy", "antonym": "sad"},
|
124 |
+
{"word": "tall", "antonym": "short"},
|
125 |
+
]
|
126 |
+
|
127 |
+
isComplete = False
|
128 |
+
|
129 |
+
while isComplete == False:
|
130 |
+
|
131 |
+
_input_gather = few_shot_prompt.format_prompt(history=chat_history, input=user_input, format_instructions=format_instructions_gather)
|
132 |
+
|
133 |
+
# chain_gather = LLMChain(llm=model, prompt=prompt_gather)
|
134 |
+
# chain_check = LLMChain(llm=model, prompt=prompt_check)
|
135 |
+
|
136 |
+
# overall_chain = SimpleSequentialChain(chains=[chain_gather, chain_check], verbose=True)
|
137 |
+
|
138 |
+
result_gather = model(_input_gather.to_string())
|
139 |
+
parsed_result_gather = output_parser_gather.parse(result_gather)
|
140 |
+
print(parsed_result_gather)
|
141 |
+
|
142 |
+
_input_check = prompt_check.format_prompt(input=parsed_result_gather, format_instructions=format_instructions_check)
|
143 |
+
result_check = model(_input_check.to_string())
|
144 |
+
parsed_result_check = output_parser_check.parse(result_check)
|
145 |
+
# print(parsed_result_check)
|
146 |
+
|
147 |
+
isComplete = parsed_result_check.isComplete
|
148 |
+
|
149 |
+
if isComplete == False:
|
150 |
+
chat_history += "User: " + user_input + "\nHelper: " + parsed_result_check.answer + "\n"
|
151 |
+
user_input = input("Helper: " + parsed_result_check.answer + "\nUser: ")
|
152 |
+
|
153 |
+
# print(overall_chain.run(input=user_input))
|
154 |
+
|
155 |
+
print(parsed_result_gather)
|
get_map.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from typing import Optional, Dict, Any
|
5 |
+
import gradio as gr
|
6 |
+
import googlemaps
|
7 |
+
from PIL import Image
|
8 |
+
from langchain.utilities.google_places_api import GooglePlacesAPIWrapper
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
import requests
|
11 |
+
from PIL import Image
|
12 |
+
from io import BytesIO
|
13 |
+
import tempfile
|
14 |
+
class GooglePlacesAPIWrapperExtended(GooglePlacesAPIWrapper):
|
15 |
+
api_key = os.environ["GPLACES_API_KEY"]
|
16 |
+
def __init__(self, **kwargs):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
def run(self, query: str, **kwargs) -> pd.DataFrame:
|
19 |
+
"""Run Places search and get k number of places that exist that match."""
|
20 |
+
search_results = self.google_map_client.places(query, **kwargs)["results"]
|
21 |
+
num_to_return = len(search_results)
|
22 |
+
places = []
|
23 |
+
if num_to_return == 0:
|
24 |
+
return pd.DataFrame(columns=["Name", "Address", "Phone Number", "Website",
|
25 |
+
"Opening Hours", "Is Open Now", "latitude", "longitude",
|
26 |
+
"Summary", "Rating", "Image", "Reviews"])
|
27 |
+
num_to_return = (
|
28 |
+
num_to_return
|
29 |
+
if self.top_k_results is None
|
30 |
+
else min(num_to_return, self.top_k_results)
|
31 |
+
)
|
32 |
+
for i in range(num_to_return):
|
33 |
+
result = search_results[i]
|
34 |
+
details = self.fetch_place_details(result["place_id"])
|
35 |
+
if details is not None:
|
36 |
+
places.append(details)
|
37 |
+
return pd.DataFrame(places)
|
38 |
+
def fetch_place_details(self, place_id: str) -> Optional[Dict[str, Any]]:
|
39 |
+
try:
|
40 |
+
place_details = self.google_map_client.place(place_id)
|
41 |
+
formatted_details = self.format_place_details(place_details)
|
42 |
+
return formatted_details
|
43 |
+
except Exception as e:
|
44 |
+
logging.error(f"An Error occurred while fetching place details: {e}")
|
45 |
+
return None
|
46 |
+
def format_place_details(self, place_details: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
47 |
+
try:
|
48 |
+
name = place_details.get("result", {}).get("name", "Unknown")
|
49 |
+
address = place_details.get("result", {}).get("formatted_address", "Unknown")
|
50 |
+
phone_number = place_details.get("result", {}).get("formatted_phone_number", "Unknown")
|
51 |
+
website = place_details.get("result", {}).get("website", "Unknown")
|
52 |
+
weekday_text = place_details.get("result", {}).get("opening_hours", {}).get("weekday_text", [])
|
53 |
+
is_open = place_details.get("result", {}).get("opening_hours", {}).get("open_now", "Unknown")
|
54 |
+
location = place_details.get("result", {}).get("geometry", {}).get("location", {})
|
55 |
+
latitude = location.get("lat", "Unknown")
|
56 |
+
longitude = location.get("lng", "Unknown")
|
57 |
+
summary = place_details.get("result", {}).get("editorial_summary", {}).get("overview", "Unknown")
|
58 |
+
rating = place_details.get("result", {}).get("rating", "Unknown")
|
59 |
+
image = place_details.get("result", {}).get("photos", [{}])[0].get("photo_reference", "Unknown")
|
60 |
+
image_url = f"https://maps.googleapis.com/maps/api/place/photo?maxwidth=400&photoreference={image}&key={self.api_key}"
|
61 |
+
first_three_reviews = place_details.get("result", {}).get("reviews", [])[:3]
|
62 |
+
formatted_details = {
|
63 |
+
"name": name,
|
64 |
+
"address": address,
|
65 |
+
"phone_number": phone_number,
|
66 |
+
"website": website,
|
67 |
+
"opening_hours": weekday_text,
|
68 |
+
"is_open_now": is_open,
|
69 |
+
"latitude": latitude,
|
70 |
+
"longitude": longitude,
|
71 |
+
"summary": summary,
|
72 |
+
"rating": rating,
|
73 |
+
"image": image_url,
|
74 |
+
"reviews": first_three_reviews
|
75 |
+
}
|
76 |
+
return formatted_details
|
77 |
+
except Exception as e:
|
78 |
+
logging.error(f"An error occurred while formatting place details: {e}")
|
79 |
+
return None
|
80 |
+
#pd.set_option("display.max_columns", None)
|
81 |
+
#pd.set_option("display.max_rows", None)
|
82 |
+
#gplaceapi = GooglePlacesAPIWrapperExtended()
|
83 |
+
#query = "Louvre, Paris"
|
84 |
+
#result_df = gplaceapi.run(query)
|
85 |
+
#print(result_df)
|
86 |
+
#query = gr.inputs.Textbox(lines=2, label="Query")
|
87 |
+
#result_df = gr.outputs.Dataframe(type="pandas")
|
88 |
+
#gr.Interface(fn=GooglePlacesAPIWrapperExtended().run, inputs=query, outputs=result_df).launch(debug=True)
|
89 |
+
def filter_map(locations):
|
90 |
+
dataframe = pd.DataFrame()
|
91 |
+
for location in locations:
|
92 |
+
dataframe = pd.concat([dataframe, GooglePlacesAPIWrapperExtended().run(location)])
|
93 |
+
|
94 |
+
names = dataframe["name"].tolist()
|
95 |
+
summaries = dataframe["summary"].tolist()
|
96 |
+
image_urls = dataframe["image"].tolist()
|
97 |
+
|
98 |
+
fig = go.Figure(go.Scattermapbox(
|
99 |
+
lat=dataframe['latitude'].tolist(),
|
100 |
+
lon=dataframe['longitude'].tolist(),
|
101 |
+
mode='markers',
|
102 |
+
marker=go.scattermapbox.Marker(
|
103 |
+
size=13,
|
104 |
+
color='rgb(255, 123, 0)',
|
105 |
+
),
|
106 |
+
hovertemplate='Name: %{customdata[0]}<br>Summary: %{customdata[1]}',
|
107 |
+
customdata=list(zip(names, summaries)),
|
108 |
+
name='Places'
|
109 |
+
))
|
110 |
+
fig.update_layout(
|
111 |
+
mapbox_style="open-street-map",
|
112 |
+
hovermode='closest',
|
113 |
+
mapbox=dict(
|
114 |
+
bearing=0,
|
115 |
+
center=go.layout.mapbox.Center(
|
116 |
+
lat=dataframe['latitude'].tolist()[0],
|
117 |
+
lon=dataframe['longitude'].tolist()[0]
|
118 |
+
),
|
119 |
+
pitch=0,
|
120 |
+
zoom=12
|
121 |
+
),
|
122 |
+
)
|
123 |
+
# Add images using layout.images attribute
|
124 |
+
#for i, url in enumerate(image_urls):
|
125 |
+
# response = requests.get(url)
|
126 |
+
# img = Image.open(BytesIO(response.content))
|
127 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
|
128 |
+
# img.save(temp.name)
|
129 |
+
# fig.add_layout_image(
|
130 |
+
# dict(
|
131 |
+
# source=temp.name,
|
132 |
+
# xref='x',
|
133 |
+
# yref='y',
|
134 |
+
# x=dataframe['longitude'].iloc[i],
|
135 |
+
# y=dataframe['latitude'].iloc[i],
|
136 |
+
# sizex=0.05,
|
137 |
+
# sizey=0.05,
|
138 |
+
# sizing='stretch',
|
139 |
+
# opacity=0.7,
|
140 |
+
# layer='above'
|
141 |
+
# )
|
142 |
+
# )
|
143 |
+
#
|
144 |
+
#fig.update_layout(
|
145 |
+
# xaxis=dict(range=[dataframe['longitude'].min(), dataframe['longitude'].max()]),
|
146 |
+
# yaxis=dict(range=[dataframe['latitude'].min(), dataframe['latitude'].max()])
|
147 |
+
#)
|
148 |
+
#
|
149 |
+
return fig, dataframe
|
150 |
+
|
151 |
+
if __name__ == "main":
|
152 |
+
with gr.Blocks() as demo:
|
153 |
+
with gr.Column():
|
154 |
+
location = gr.Textbox(lines=2, label="Location")
|
155 |
+
btn = gr.Button(value="Update Filter")
|
156 |
+
map = gr.Plot().style()
|
157 |
+
result_df = gr.Dataframe(type="pandas")
|
158 |
+
btn.click(filter_map, [location], [map, result_df])
|
159 |
+
demo.queue(concurrency_count=6).launch()
|
main.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from agents.gather_agent import Gather_Agent
|
2 |
+
from agents.check_agent import Check_Agent
|
3 |
+
from agents.response_agent import Response_Agent
|
4 |
+
from agents.planner_agent import Planner_Agent
|
5 |
+
|
6 |
+
gather_agent = Gather_Agent()
|
7 |
+
check_agent = Check_Agent()
|
8 |
+
response_agent = Response_Agent()
|
9 |
+
planner_agent = Planner_Agent()
|
10 |
+
|
11 |
+
isComplete = False
|
12 |
+
chat_history = ""
|
13 |
+
|
14 |
+
helper_anwser = "Hello, can you tell me your trip details and constraints so I can give you great recomendations?"
|
15 |
+
user_input = input("Helper: " + helper_anwser + "\nUser: ")
|
16 |
+
|
17 |
+
def send_message(user_input, chat_history):
|
18 |
+
isComplete = False
|
19 |
+
helper_anwser = ""
|
20 |
+
|
21 |
+
_input_gather = gather_agent.format_prompt(input=user_input, history=chat_history)
|
22 |
+
parsed_result_gather = gather_agent.get_parsed_result(_input_gather)
|
23 |
+
|
24 |
+
_input_check = check_agent.format_prompt(input=parsed_result_gather)
|
25 |
+
isComplete = check_agent.get_parsed_result(_input_check)
|
26 |
+
|
27 |
+
if isComplete == False:
|
28 |
+
_input_response = response_agent.format_prompt(input=parsed_result_gather)
|
29 |
+
helper_anwser = response_agent.get_parsed_result(_input_response)
|
30 |
+
|
31 |
+
return isComplete, helper_anwser, parsed_result_gather
|
32 |
+
|
33 |
+
def get_itenerary(parsed_result_gather):
|
34 |
+
_input_planner = planner_agent.format_prompt(parsed_result_gather)
|
35 |
+
return planner_agent.get_itenerary(_input_planner)
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
while isComplete == False:
|
40 |
+
isComplete, helper_anwser, parsed_result_gather = send_message(user_input, chat_history)
|
41 |
+
|
42 |
+
if isComplete == False:
|
43 |
+
chat_history += "User: " + user_input + "\nHelper: " + helper_anwser + "\n"
|
44 |
+
user_input = input("Helper: " + helper_anwser + "\nUser: ")
|
45 |
+
|
46 |
+
|
47 |
+
print(parsed_result_gather)
|
48 |
+
print(get_itenerary(parsed_result_gather))
|
49 |
+
|
50 |
+
_input_places = planner_agent.format_instructions_places(parsed_result_gather)
|
51 |
+
parsed_result_places = planner_agent.get_places_from_itenerary(_input_places)
|
52 |
+
print(planner_agent.get_itenerary(_input_planner))
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai==0.27.2
|
2 |
+
openapi-python-client==0.13.4
|
3 |
+
openapi-schema-pydantic==1.2.4
|
4 |
+
chromadb==0.3.26
|
5 |
+
langchain==0.0.201
|
6 |
+
googlemaps==4.10.0
|
7 |
+
plotly==5.15.0
|