Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
def torch_samps_to_imgs(imgs, uncenter=True): | |
if uncenter: | |
imgs = (imgs + 1) / 2 # [-1, 1] -> [0, 1] | |
imgs = (imgs * 255).clamp(0, 255) | |
imgs = imgs.to(torch.uint8) | |
imgs = imgs.permute(0, 2, 3, 1) | |
imgs = imgs.cpu().numpy() | |
return imgs | |
def imgs_to_torch(imgs): | |
assert imgs.dtype == np.uint8 | |
assert len(imgs.shape) == 4 and imgs.shape[-1] == 3, "expect (N, H, W, C)" | |
_, H, W, _ = imgs.shape | |
imgs = imgs.transpose(0, 3, 1, 2) | |
imgs = (imgs / 255).astype(np.float32) | |
imgs = (imgs * 2) - 1 | |
imgs = torch.as_tensor(imgs) | |
H, W = [_l - (_l % 32) for _l in (H, W)] | |
imgs = torch.nn.functional.interpolate(imgs, (H, W), mode="bilinear") | |
return imgs | |
def test_encode_decode(): | |
import imageio | |
from run_img_sampling import ScoreAdapter, SD | |
from vis import _draw | |
fname = "~/clean.png" | |
raw = imageio.imread(fname) | |
raw = imgs_to_torch(raw[np.newaxis, ...]) | |
model: ScoreAdapter = SD().run() | |
raw = raw.to(model.device) | |
zs = model.encode(raw) | |
img = model.decode(zs) | |
img = torch_samps_to_imgs(img) | |
_draw( | |
[imageio.imread(fname), img.squeeze(0)], | |
) | |
def test(): | |
test_encode_decode() | |
if __name__ == "__main__": | |
test() | |