import torch.nn as nn import numpy as np import torch.nn.functional as F import torch from functools import partial from .layers import * from .normalization import get_normalization def get_sigmas(config): if config.model.sigma_dist == 'geometric': sigmas = torch.tensor( np.exp(np.linspace(np.log(config.model.sigma_begin), np.log(config.model.sigma_end), config.model.num_classes))).float().to(config.device) elif config.model.sigma_dist == 'uniform': sigmas = torch.tensor( np.linspace(config.model.sigma_begin, config.model.sigma_end, config.model.num_classes) ).float().to(config.device) else: raise NotImplementedError('sigma distribution not supported') return sigmas class NCSNv2(nn.Module): def __init__(self, config): super().__init__() self.logit_transform = config.data.logit_transform self.rescaled = config.data.rescaled self.norm = get_normalization(config, conditional=False) self.ngf = ngf = config.model.ngf self.num_classes = num_classes = config.model.num_classes self.act = act = get_act(config) self.register_buffer('sigmas', get_sigmas(config)) self.config = config self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1) self.normalizer = self.norm(ngf, self.num_classes) self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1) self.res1 = nn.ModuleList([ ResidualBlock(self.ngf, self.ngf, resample=None, act=act, normalization=self.norm), ResidualBlock(self.ngf, self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res2 = nn.ModuleList([ ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res3 = nn.ModuleList([ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm, dilation=2), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm, dilation=2)] ) if config.data.image_size == 28: self.res4 = nn.ModuleList([ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm, adjust_padding=True, dilation=4), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm, dilation=4)] ) else: self.res4 = nn.ModuleList([ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm, adjust_padding=False, dilation=4), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm, dilation=4)] ) self.refine1 = RefineBlock([2 * self.ngf], 2 * self.ngf, act=act, start=True) self.refine2 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act) self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act) self.refine4 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True) def _compute_cond_module(self, module, x): for m in module: x = m(x) return x def forward(self, x, y): if not self.logit_transform and not self.rescaled: h = 2 * x - 1. else: h = x output = self.begin_conv(h) layer1 = self._compute_cond_module(self.res1, output) layer2 = self._compute_cond_module(self.res2, layer1) layer3 = self._compute_cond_module(self.res3, layer2) layer4 = self._compute_cond_module(self.res4, layer3) ref1 = self.refine1([layer4], layer4.shape[2:]) ref2 = self.refine2([layer3, ref1], layer3.shape[2:]) ref3 = self.refine3([layer2, ref2], layer2.shape[2:]) output = self.refine4([layer1, ref3], layer1.shape[2:]) output = self.normalizer(output) output = self.act(output) output = self.end_conv(output) used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) output = output / used_sigmas return output class NCSNv2Deeper(nn.Module): def __init__(self, config): super().__init__() self.logit_transform = config.data.logit_transform self.rescaled = config.data.rescaled self.norm = get_normalization(config, conditional=False) self.ngf = ngf = config.model.ngf self.num_classes = config.model.num_classes self.act = act = get_act(config) self.register_buffer('sigmas', get_sigmas(config)) self.config = config self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1) self.normalizer = self.norm(ngf, self.num_classes) self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1) self.res1 = nn.ModuleList([ ResidualBlock(self.ngf, self.ngf, resample=None, act=act, normalization=self.norm), ResidualBlock(self.ngf, self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res2 = nn.ModuleList([ ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res3 = nn.ModuleList([ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res4 = nn.ModuleList([ ResidualBlock(2 * self.ngf, 4 * self.ngf, resample='down', act=act, normalization=self.norm, dilation=2), ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act, normalization=self.norm, dilation=2)] ) self.res5 = nn.ModuleList([ ResidualBlock(4 * self.ngf, 4 * self.ngf, resample='down', act=act, normalization=self.norm, dilation=4), ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act, normalization=self.norm, dilation=4)] ) self.refine1 = RefineBlock([4 * self.ngf], 4 * self.ngf, act=act, start=True) self.refine2 = RefineBlock([4 * self.ngf, 4 * self.ngf], 2 * self.ngf, act=act) self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act) self.refine4 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act) self.refine5 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True) def _compute_cond_module(self, module, x): for m in module: x = m(x) return x def forward(self, x, y): if not self.logit_transform and not self.rescaled: h = 2 * x - 1. else: h = x output = self.begin_conv(h) layer1 = self._compute_cond_module(self.res1, output) layer2 = self._compute_cond_module(self.res2, layer1) layer3 = self._compute_cond_module(self.res3, layer2) layer4 = self._compute_cond_module(self.res4, layer3) layer5 = self._compute_cond_module(self.res5, layer4) ref1 = self.refine1([layer5], layer5.shape[2:]) ref2 = self.refine2([layer4, ref1], layer4.shape[2:]) ref3 = self.refine3([layer3, ref2], layer3.shape[2:]) ref4 = self.refine4([layer2, ref3], layer2.shape[2:]) output = self.refine5([layer1, ref4], layer1.shape[2:]) output = self.normalizer(output) output = self.act(output) output = self.end_conv(output) used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) output = output / used_sigmas return output class NCSNv2Deepest(nn.Module): def __init__(self, config): super().__init__() self.logit_transform = config.data.logit_transform self.rescaled = config.data.rescaled self.norm = get_normalization(config, conditional=False) self.ngf = ngf = config.model.ngf self.num_classes = config.model.num_classes self.act = act = get_act(config) self.register_buffer('sigmas', get_sigmas(config)) self.config = config self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1) self.normalizer = self.norm(ngf, self.num_classes) self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1) self.res1 = nn.ModuleList([ ResidualBlock(self.ngf, self.ngf, resample=None, act=act, normalization=self.norm), ResidualBlock(self.ngf, self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res2 = nn.ModuleList([ ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res3 = nn.ModuleList([ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res31 = nn.ModuleList([ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act, normalization=self.norm), ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act, normalization=self.norm)] ) self.res4 = nn.ModuleList([ ResidualBlock(2 * self.ngf, 4 * self.ngf, resample='down', act=act, normalization=self.norm, dilation=2), ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act, normalization=self.norm, dilation=2)] ) self.res5 = nn.ModuleList([ ResidualBlock(4 * self.ngf, 4 * self.ngf, resample='down', act=act, normalization=self.norm, dilation=4), ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act, normalization=self.norm, dilation=4)] ) self.refine1 = RefineBlock([4 * self.ngf], 4 * self.ngf, act=act, start=True) self.refine2 = RefineBlock([4 * self.ngf, 4 * self.ngf], 2 * self.ngf, act=act) self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act) self.refine31 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act) self.refine4 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act) self.refine5 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True) def _compute_cond_module(self, module, x): for m in module: x = m(x) return x def forward(self, x, y): if not self.logit_transform and not self.rescaled: h = 2 * x - 1. else: h = x output = self.begin_conv(h) layer1 = self._compute_cond_module(self.res1, output) layer2 = self._compute_cond_module(self.res2, layer1) layer3 = self._compute_cond_module(self.res3, layer2) layer31 = self._compute_cond_module(self.res31, layer3) layer4 = self._compute_cond_module(self.res4, layer31) layer5 = self._compute_cond_module(self.res5, layer4) ref1 = self.refine1([layer5], layer5.shape[2:]) ref2 = self.refine2([layer4, ref1], layer4.shape[2:]) ref31 = self.refine31([layer31, ref2], layer31.shape[2:]) ref3 = self.refine3([layer3, ref31], layer3.shape[2:]) ref4 = self.refine4([layer2, ref3], layer2.shape[2:]) output = self.refine5([layer1, ref4], layer1.shape[2:]) output = self.normalizer(output) output = self.act(output) output = self.end_conv(output) used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:]))) output = output / used_sigmas return output