|
|
|
|
|
import gradio as gr |
|
from PIL import Image |
|
import traceback |
|
import re |
|
import torch |
|
import numpy as np |
|
import tensorflow as tf |
|
from tensorflow.keras.models import load_model |
|
import argparse |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
class_names = ['Calculus', 'Dental Caries', 'Gingivitis', 'Hypodontia', 'Tooth Discoloration'] |
|
cnn_model = load_model('new_model2.h5') |
|
|
|
|
|
parser = argparse.ArgumentParser(description='app') |
|
parser.add_argument('--device', type=str, default='cpu', help='cpu') |
|
parser.add_argument('--dtype', type=str, default='fp32', help='fp32') |
|
args = parser.parse_args() |
|
device = args.device |
|
assert device in ['cpu'] |
|
|
|
|
|
if args.dtype == 'fp32': |
|
dtype = torch.float32 |
|
else: |
|
dtype = torch.float16 |
|
|
|
|
|
model_path = 'openbmb/MiniCPM-V-2' |
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=dtype) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
|
|
model = model.to(device=device) |
|
model.eval() |
|
|
|
ERROR_MSG = "Error, please retry" |
|
model_name = 'MiniCPM-V 2.0' |
|
|
|
|
|
form_radio = { |
|
'choices': ['Beam Search', 'Sampling'], |
|
'value': 'Sampling', |
|
'interactive': True, |
|
'label': 'Decode Type' |
|
} |
|
|
|
|
|
num_beams_slider = {'minimum': 0, 'maximum': 5, 'value': 3, 'step': 1, 'interactive': True, 'label': 'Num Beams'} |
|
repetition_penalty_slider = {'minimum': 0, 'maximum': 3, 'value': 1.2, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty'} |
|
repetition_penalty_slider2 = {'minimum': 0, 'maximum': 3, 'value': 1.05, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty'} |
|
max_new_tokens_slider = {'minimum': 1, 'maximum': 4096, 'value': 1024, 'step': 1, 'interactive': True, 'label': 'Max New Tokens'} |
|
top_p_slider = {'minimum': 0, 'maximum': 1, 'value': 0.8, 'step': 0.05, 'interactive': True, 'label': 'Top P'} |
|
top_k_slider = {'minimum': 0, 'maximum': 200, 'value': 100, 'step': 1, 'interactive': True, 'label': 'Top K'} |
|
temperature_slider = {'minimum': 0, 'maximum': 2, 'value': 0.7, 'step': 0.05, 'interactive': True, 'label': 'Temperature'} |
|
|
|
def classify_images(image): |
|
|
|
if image is None: |
|
return "No image uploaded. Please upload a dental image." |
|
|
|
|
|
try: |
|
input_image = tf.image.resize(image, (180, 180)) |
|
input_image_array = tf.keras.utils.img_to_array(input_image) |
|
input_image_exp_dim = tf.expand_dims(input_image_array, axis=0) |
|
|
|
|
|
predictions = cnn_model.predict(input_image_exp_dim) |
|
result = tf.nn.softmax(predictions[0]) |
|
|
|
|
|
outcome = f'The image belongs to {class_names[np.argmax(result)]} with a score of {np.max(result) * 100:.2f}%' |
|
return outcome |
|
except Exception as e: |
|
return f"Error processing the image: {str(e)}" |
|
|
|
def create_component(params, comp='Slider'): |
|
if comp == 'Slider': |
|
return gr.Slider(**params) |
|
elif comp == 'Radio': |
|
return gr.Radio(choices=params['choices'], value=params['value'], interactive=params['interactive'], label=params['label']) |
|
elif comp == 'Button': |
|
return gr.Button(value=params['value'], interactive=True) |
|
|
|
def chat(img, msgs, ctx, params=None): |
|
default_params = {"num_beams": 3, "repetition_penalty": 1.2, "max_new_tokens": 1024} |
|
if params is None: |
|
params = default_params |
|
if img is None: |
|
return -1, "Error, invalid image, please upload a new image", None, None |
|
try: |
|
image = img.convert('RGB') |
|
answer, context, _ = model.chat(image=image, msgs=msgs, context=None, tokenizer=tokenizer, **params) |
|
res = re.sub(r'(<box>.*</box>)', '', answer).replace('<ref>', '').replace('</ref>', '').replace('<box>', '').replace('</box>', '') |
|
return 0, res, None, None |
|
except Exception as err: |
|
print(err) |
|
traceback.print_exc() |
|
return -1, ERROR_MSG, None, None |
|
|
|
def upload_img(image, _chatbot, _app_session): |
|
image = Image.fromarray(image) |
|
_app_session['sts'] = None |
|
_app_session['ctx'] = [] |
|
_app_session['img'] = image |
|
_chatbot.append(('', 'Image uploaded successfully, you can talk to me now')) |
|
return _chatbot, _app_session |
|
|
|
def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature): |
|
if _app_cfg.get('ctx', None) is None: |
|
_chat_bot.append((_question, 'Please upload an image to start')) |
|
return '', _chat_bot, _app_cfg |
|
|
|
_context = _app_cfg['ctx'].copy() |
|
_context.append({"role": "user", "content": _question}) |
|
|
|
if params_form == 'Beam Search': |
|
params = {'sampling': False, 'num_beams': num_beams, 'repetition_penalty': repetition_penalty, "max_new_tokens": 896} |
|
else: |
|
params = { |
|
'sampling': True, |
|
'top_p': top_p, |
|
'top_k': top_k, |
|
'temperature': temperature, |
|
'repetition_penalty': repetition_penalty_2, |
|
"max_new_tokens": 896 |
|
} |
|
|
|
code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params) |
|
|
|
_context.append({"role": "assistant", "content": _answer}) |
|
_chat_bot.append((_question, _answer)) |
|
if code == 0: |
|
_app_cfg['ctx'] = _context |
|
_app_cfg['sts'] = sts |
|
return '', _chat_bot, _app_cfg |
|
|
|
def clear(chat_bot, app_session): |
|
app_session['img'] = None |
|
chat_bot.clear() |
|
return chat_bot |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("<h1 style='text-align: center;'>Medical Assistant</h1>") |
|
|
|
with gr.Tab("Image Classification"): |
|
with gr.Row(): |
|
image_input = gr.Image(type='numpy', label="Upload Dental Image") |
|
classification_output = gr.Label(num_top_classes=5, label="Classification Results") |
|
image_input.change(fn=classify_images, inputs=image_input, outputs=classification_output) |
|
|
|
with gr.Tab("Medical Chatbot"): |
|
with gr.Row(): |
|
with gr.Column(scale=2, min_width=300): |
|
app_session = gr.State({'sts': None, 'ctx': None, 'img': None}) |
|
bt_pic = gr.Image(label="Upload an image to start") |
|
txt_message = gr.Textbox(label="Ask your question...") |
|
|
|
with gr.Column(scale=2, min_width=300): |
|
chat_bot = gr.Chatbot(label=f"Chatbot") |
|
clear_button = gr.Button(value='Clear') |
|
txt_message.submit( |
|
respond, |
|
[txt_message, chat_bot, app_session], |
|
[txt_message, chat_bot, app_session] |
|
) |
|
|
|
bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic, chat_bot, app_session], outputs=[chat_bot, app_session]) |
|
clear_button.click(clear, [chat_bot, app_session], chat_bot) |
|
|
|
|
|
app.launch(share=True, debug=True, show_api=False) |