#!/usr/bin/env python
# encoding: utf-8
import gradio as gr
from PIL import Image
import traceback
import re
import torch
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model # type: ignore
import argparse
from transformers import AutoModel, AutoTokenizer
# Configuration for image classification model
class_names = ['Calculus', 'Dental Caries', 'Gingivitis', 'Hypodontia', 'Tooth Discoloration']
cnn_model = load_model('new_model2.h5')
# Argparser
parser = argparse.ArgumentParser(description='app')
parser.add_argument('--device', type=str, default='cpu', help='cpu')
parser.add_argument('--dtype', type=str, default='fp32', help='fp32')
args = parser.parse_args()
device = args.device
assert device in ['cpu']
# Set dtype
if args.dtype == 'fp32':
dtype = torch.float32
else:
dtype = torch.float16
# Load model
model_path = 'openbmb/MiniCPM-V-2'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=dtype)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to(device=device)
model.eval()
ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-V 2.0'
# UI Components
form_radio = {
'choices': ['Beam Search', 'Sampling'],
'value': 'Sampling',
'interactive': True,
'label': 'Decode Type'
}
# Sliders and their settings
num_beams_slider = {'minimum': 0, 'maximum': 5, 'value': 3, 'step': 1, 'interactive': True, 'label': 'Num Beams'}
repetition_penalty_slider = {'minimum': 0, 'maximum': 3, 'value': 1.2, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty'}
repetition_penalty_slider2 = {'minimum': 0, 'maximum': 3, 'value': 1.05, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty'}
max_new_tokens_slider = {'minimum': 1, 'maximum': 4096, 'value': 1024, 'step': 1, 'interactive': True, 'label': 'Max New Tokens'}
top_p_slider = {'minimum': 0, 'maximum': 1, 'value': 0.8, 'step': 0.05, 'interactive': True, 'label': 'Top P'}
top_k_slider = {'minimum': 0, 'maximum': 200, 'value': 100, 'step': 1, 'interactive': True, 'label': 'Top K'}
temperature_slider = {'minimum': 0, 'maximum': 2, 'value': 0.7, 'step': 0.05, 'interactive': True, 'label': 'Temperature'}
def classify_images(image):
# Check if the image is None
if image is None:
return "No image uploaded. Please upload a dental image."
# Resize and preprocess the image
try:
input_image = tf.image.resize(image, (180, 180)) # Resize to expected input size
input_image_array = tf.keras.utils.img_to_array(input_image)
input_image_exp_dim = tf.expand_dims(input_image_array, axis=0)
# Make predictions
predictions = cnn_model.predict(input_image_exp_dim)
result = tf.nn.softmax(predictions[0])
# Prepare the outcome message
outcome = f'The image belongs to {class_names[np.argmax(result)]} with a score of {np.max(result) * 100:.2f}%'
return outcome
except Exception as e:
return f"Error processing the image: {str(e)}"
def create_component(params, comp='Slider'):
if comp == 'Slider':
return gr.Slider(**params)
elif comp == 'Radio':
return gr.Radio(choices=params['choices'], value=params['value'], interactive=params['interactive'], label=params['label'])
elif comp == 'Button':
return gr.Button(value=params['value'], interactive=True)
def chat(img, msgs, ctx, params=None):
default_params = {"num_beams": 3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
if params is None:
params = default_params
if img is None:
return -1, "Error, invalid image, please upload a new image", None, None
try:
image = img.convert('RGB')
answer, context, _ = model.chat(image=image, msgs=msgs, context=None, tokenizer=tokenizer, **params)
res = re.sub(r'(