#!/usr/bin/env python # encoding: utf-8 import gradio as gr from PIL import Image import traceback import re import torch import numpy as np import tensorflow as tf from tensorflow.keras.models import load_model # type: ignore import argparse from transformers import AutoModel, AutoTokenizer # Configuration for image classification model class_names = ['Calculus', 'Dental Caries', 'Gingivitis', 'Hypodontia', 'Tooth Discoloration'] cnn_model = load_model('new_model2.h5') # Argparser parser = argparse.ArgumentParser(description='app') parser.add_argument('--device', type=str, default='cpu', help='cpu') parser.add_argument('--dtype', type=str, default='fp32', help='fp32') args = parser.parse_args() device = args.device assert device in ['cpu'] # Set dtype if args.dtype == 'fp32': dtype = torch.float32 else: dtype = torch.float16 # Load model model_path = 'openbmb/MiniCPM-V-2' model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=dtype) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = model.to(device=device) model.eval() ERROR_MSG = "Error, please retry" model_name = 'MiniCPM-V 2.0' # UI Components form_radio = { 'choices': ['Beam Search', 'Sampling'], 'value': 'Sampling', 'interactive': True, 'label': 'Decode Type' } # Sliders and their settings num_beams_slider = {'minimum': 0, 'maximum': 5, 'value': 3, 'step': 1, 'interactive': True, 'label': 'Num Beams'} repetition_penalty_slider = {'minimum': 0, 'maximum': 3, 'value': 1.2, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty'} repetition_penalty_slider2 = {'minimum': 0, 'maximum': 3, 'value': 1.05, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty'} max_new_tokens_slider = {'minimum': 1, 'maximum': 4096, 'value': 1024, 'step': 1, 'interactive': True, 'label': 'Max New Tokens'} top_p_slider = {'minimum': 0, 'maximum': 1, 'value': 0.8, 'step': 0.05, 'interactive': True, 'label': 'Top P'} top_k_slider = {'minimum': 0, 'maximum': 200, 'value': 100, 'step': 1, 'interactive': True, 'label': 'Top K'} temperature_slider = {'minimum': 0, 'maximum': 2, 'value': 0.7, 'step': 0.05, 'interactive': True, 'label': 'Temperature'} def classify_images(image): # Check if the image is None if image is None: return "No image uploaded. Please upload a dental image." # Resize and preprocess the image try: input_image = tf.image.resize(image, (180, 180)) # Resize to expected input size input_image_array = tf.keras.utils.img_to_array(input_image) input_image_exp_dim = tf.expand_dims(input_image_array, axis=0) # Make predictions predictions = cnn_model.predict(input_image_exp_dim) result = tf.nn.softmax(predictions[0]) # Prepare the outcome message outcome = f'The image belongs to {class_names[np.argmax(result)]} with a score of {np.max(result) * 100:.2f}%' return outcome except Exception as e: return f"Error processing the image: {str(e)}" def create_component(params, comp='Slider'): if comp == 'Slider': return gr.Slider(**params) elif comp == 'Radio': return gr.Radio(choices=params['choices'], value=params['value'], interactive=params['interactive'], label=params['label']) elif comp == 'Button': return gr.Button(value=params['value'], interactive=True) def chat(img, msgs, ctx, params=None): default_params = {"num_beams": 3, "repetition_penalty": 1.2, "max_new_tokens": 1024} if params is None: params = default_params if img is None: return -1, "Error, invalid image, please upload a new image", None, None try: image = img.convert('RGB') answer, context, _ = model.chat(image=image, msgs=msgs, context=None, tokenizer=tokenizer, **params) res = re.sub(r'(.*)', '', answer).replace('', '').replace('', '').replace('', '').replace('', '') return 0, res, None, None except Exception as err: print(err) traceback.print_exc() return -1, ERROR_MSG, None, None def upload_img(image, _chatbot, _app_session): image = Image.fromarray(image) _app_session['sts'] = None _app_session['ctx'] = [] _app_session['img'] = image _chatbot.append(('', 'Image uploaded successfully, you can talk to me now')) return _chatbot, _app_session def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature): if _app_cfg.get('ctx', None) is None: _chat_bot.append((_question, 'Please upload an image to start')) return '', _chat_bot, _app_cfg _context = _app_cfg['ctx'].copy() _context.append({"role": "user", "content": _question}) if params_form == 'Beam Search': params = {'sampling': False, 'num_beams': num_beams, 'repetition_penalty': repetition_penalty, "max_new_tokens": 896} else: # Ensure this block is executed for Sampling params = { 'sampling': True, 'top_p': top_p, 'top_k': top_k, 'temperature': temperature, 'repetition_penalty': repetition_penalty_2, "max_new_tokens": 896 } code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params) _context.append({"role": "assistant", "content": _answer}) _chat_bot.append((_question, _answer)) if code == 0: _app_cfg['ctx'] = _context _app_cfg['sts'] = sts return '', _chat_bot, _app_cfg def clear(chat_bot, app_session): app_session['img'] = None chat_bot.clear() return chat_bot with gr.Blocks() as app: gr.Markdown("

Medical Assistant

") with gr.Tab("Image Classification"): with gr.Row(): image_input = gr.Image(type='numpy', label="Upload Dental Image") classification_output = gr.Label(num_top_classes=5, label="Classification Results") image_input.change(fn=classify_images, inputs=image_input, outputs=classification_output) with gr.Tab("Medical Chatbot"): with gr.Row(): with gr.Column(scale=2, min_width=300): app_session = gr.State({'sts': None, 'ctx': None, 'img': None}) bt_pic = gr.Image(label="Upload an image to start") txt_message = gr.Textbox(label="Ask your question...") with gr.Column(scale=2, min_width=300): chat_bot = gr.Chatbot(label=f"Chatbot") clear_button = gr.Button(value='Clear') txt_message.submit( respond, [txt_message, chat_bot, app_session], [txt_message, chat_bot, app_session] ) bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic, chat_bot, app_session], outputs=[chat_bot, app_session]) clear_button.click(clear, [chat_bot, app_session], chat_bot) # Launch app.launch(share=True, debug=True, show_api=False)