Mjlehtim commited on
Commit
8f9086f
β€’
1 Parent(s): fb38eee

Simpler streamlined working app

Browse files
Files changed (1) hide show
  1. app.py +545 -0
app.py ADDED
@@ -0,0 +1,545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import streamlit as st
4
+ from fpdf import FPDF
5
+ from chromadb import Client
6
+ from chromadb.config import Settings
7
+ import chromadb
8
+ import json
9
+ from langchain_community.utilities import SerpAPIWrapper
10
+ from llama_index.core import VectorStoreIndex
11
+ from langchain_core.output_parsers import StrOutputParser
12
+ from langchain_core.runnables import RunnablePassthrough
13
+ from langchain_groq import ChatGroq
14
+ from langchain.chains import LLMChain
15
+ from langchain.agents import AgentType, Tool, initialize_agent, AgentExecutor
16
+ from llama_parse import LlamaParse
17
+ from langchain_community.document_loaders import UnstructuredMarkdownLoader
18
+ from langchain_huggingface import HuggingFaceEmbeddings
19
+ from llama_index.core import SimpleDirectoryReader
20
+ from dotenv import load_dotenv, find_dotenv
21
+ import pandas as pd
22
+ from streamlit_chat import message
23
+ from langchain_community.vectorstores import Chroma
24
+ from langchain_community.utilities import SerpAPIWrapper
25
+ from langchain.chains import RetrievalQA
26
+ from langchain_community.document_loaders import DirectoryLoader
27
+ from langchain_community.document_loaders import PyMuPDFLoader
28
+ from langchain_community.document_loaders import UnstructuredXMLLoader
29
+ from langchain_community.document_loaders import CSVLoader
30
+ from langchain.prompts import PromptTemplate
31
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
32
+ from langchain.memory import ConversationBufferMemory
33
+ from langchain.prompts import PromptTemplate
34
+ import joblib
35
+ import nltk
36
+
37
+ import nest_asyncio # noqa: E402
38
+ nest_asyncio.apply()
39
+
40
+ load_dotenv()
41
+ load_dotenv(find_dotenv())
42
+
43
+ nltk.download('averaged_perceptron_tagger_eng')
44
+
45
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
46
+ SERPAPI_API_KEY = os.environ["SERPAPI_API_KEY"]
47
+ GOOGLE_CSE_ID = os.environ["GOOGLE_CSE_ID"]
48
+ GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
49
+ LLAMA_PARSE_API_KEY = os.environ["LLAMA_PARSE_API_KEY"]
50
+ HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
51
+ groq_api_key=os.getenv('GROQ_API_KEY')
52
+
53
+ st.set_page_config(layout="wide")
54
+
55
+ css = """
56
+ <style>
57
+ [data-testid="stAppViewContainer"] {
58
+ background-color: #f8f9fa; /* Very light grey */
59
+ }
60
+ [data-testid="stSidebar"] {
61
+ background-color: white;
62
+ color: black;
63
+ }
64
+ [data-testid="stAppViewContainer"] * {
65
+ color: black; /* Ensure all text is black */
66
+ }
67
+ button {
68
+ background-color: #add8e6; /* Light blue for primary buttons */
69
+ color: black;
70
+ border: 2px solid green; /* Green border */
71
+ }
72
+ button:hover {
73
+ background-color: #87ceeb; /* Slightly darker blue on hover */
74
+ }
75
+ button:active {
76
+ outline: 2px solid green; /* Green outline when the button is pressed */
77
+ outline-offset: 2px; /* Space between button and outline */
78
+ }
79
+ .stButton>button:first-child {
80
+ background-color: #add8e6; /* Light blue for primary buttons */
81
+ color: black;
82
+ }
83
+ .stButton>button:first-child:hover {
84
+ background-color: #87ceeb; /* Slightly darker blue on hover */
85
+ }
86
+ .stButton>button:nth-child(2) {
87
+ background-color: #b0e0e6; /* Even lighter blue for secondary buttons */
88
+ color: black;
89
+ }
90
+ .stButton>button:nth-child(2):hover {
91
+ background-color: #add8e6; /* Slightly darker blue on hover */
92
+ }
93
+ [data-testid="stFileUploadDropzone"] {
94
+ background-color: white; /* White background for file upload */
95
+ }
96
+ [data-testid="stFileUploadDropzone"] .stDropzone, [data-testid="stFileUploadDropzone"] .stDropzone input {
97
+ color: black; /* Ensure file upload text is black */
98
+ }
99
+
100
+ .stButton>button:active {
101
+ outline: 2px solid green; /* Green outline when the button is pressed */
102
+ outline-offset: 2px;
103
+ }
104
+ </style>
105
+ """
106
+
107
+ st.write(css, unsafe_allow_html=True)
108
+
109
+ st.sidebar.image('StratXcel.png', width=150)
110
+
111
+ #--------------
112
+ def load_credentials(filepath):
113
+ with open(filepath, 'r') as file:
114
+ return json.load(file)
115
+
116
+ # Load credentials from 'credentials.json'
117
+ credentials = load_credentials('Assets/credentials.json')
118
+
119
+ # Initialize session state if not already done
120
+ if 'logged_in' not in st.session_state:
121
+ st.session_state.logged_in = False
122
+ st.session_state.username = ''
123
+
124
+ # Function to handle login
125
+ def login(username, password):
126
+ if username in credentials and credentials[username] == password:
127
+ st.session_state.logged_in = True
128
+ st.session_state.username = username
129
+ st.rerun() # Rerun to reflect login state
130
+ else:
131
+ st.session_state.logged_in = False
132
+ st.session_state.username = ''
133
+ st.error("Invalid username or password.")
134
+
135
+ # Function to handle logout
136
+ def logout():
137
+ st.session_state.logged_in = False
138
+ st.session_state.username = ''
139
+ st.rerun() # Rerun to reflect logout state
140
+
141
+ # If not logged in, show login form
142
+ if not st.session_state.logged_in:
143
+ st.sidebar.write("Login")
144
+ username = st.sidebar.text_input('Username')
145
+ password = st.sidebar.text_input('Password', type='password')
146
+ if st.sidebar.button('Login'):
147
+ login(username, password)
148
+ # Stop the script here if the user is not logged in
149
+ st.stop()
150
+
151
+ # If logged in, show logout button and main content
152
+ if st.session_state.logged_in:
153
+ st.sidebar.write(f"Welcome, {st.session_state.username}!")
154
+ if st.sidebar.button('Logout'):
155
+ logout()
156
+ #-------------
157
+ llm=ChatGroq(groq_api_key=groq_api_key,
158
+ model_name="Llama-3.1-70b-Versatile", temperature = 0.0, streaming=True)
159
+ #model_name="Llama-3.1-70b-Versatile", temperature = 0.0, streaming=True)
160
+
161
+ llm_tool=ChatGroq(groq_api_key=groq_api_key,
162
+ model_name="llama3-groq-70b-8192-tool-use-preview", temperature = 0.0, streaming=True)
163
+ #model_name="Llama-3.1-70b-Versatile", temperature = 0.0, streaming=True)
164
+ #--------------
165
+ doc_retriever_ESG = None
166
+ #--------------
167
+
168
+ #@st.cache_data
169
+ def load_or_parse_data_ESG():
170
+ data_file = "./data/parsed_data_ESG.pkl"
171
+
172
+ parsingInstructionUber10k = """The provided document contains detailed information about the company's environmental, social, and governance matters.
173
+ It contains several tables, figures, and statistical information about CO2 emissions and energy consumption.
174
+ Give only precise CO2 and energy consumption levels from the context documents.
175
+ You must never provide false numeric or statistical data not included in the context document.
176
+ Include tables and numeric data always when possible. Only refer to other sources if the context document refers to them or if necessary to provide additional understanding to the company's own data."""
177
+
178
+ parser = LlamaParse(api_key=LLAMA_PARSE_API_KEY,
179
+ result_type="markdown",
180
+ parsing_instruction=parsingInstructionUber10k,
181
+ max_timeout=5000,
182
+ gpt4o_mode=True,
183
+ )
184
+
185
+ file_extractor = {".pdf": parser}
186
+ reader = SimpleDirectoryReader("./ESG_Documents", file_extractor=file_extractor)
187
+ documents = reader.load_data()
188
+
189
+ print("Saving the parse results in .pkl format ..........")
190
+ joblib.dump(documents, data_file)
191
+
192
+ # Set the parsed data to the variable
193
+ parsed_data_ESG = documents
194
+
195
+ return parsed_data_ESG
196
+
197
+ #--------------
198
+ # Create vector database
199
+
200
+ @st.cache_resource
201
+ def create_vector_database_ESG():
202
+ # Call the function to either load or parse the data
203
+ llama_parse_documents = load_or_parse_data_ESG()
204
+
205
+ with open('data/output_ESG.md', 'a') as f: # Open the file in append mode ('a')
206
+ for doc in llama_parse_documents:
207
+ f.write(doc.text + '\n')
208
+
209
+ markdown_path = "data/output_ESG.md"
210
+ loader = UnstructuredMarkdownLoader(markdown_path)
211
+ documents = loader.load()
212
+ # Split loaded documents into chunks
213
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=30)
214
+ docs = text_splitter.split_documents(documents)
215
+
216
+ #len(docs)
217
+ print(f"length of documents loaded: {len(documents)}")
218
+ print(f"total number of document chunks generated :{len(docs)}")
219
+ persist_directory = "./chroma_db_LT" # Specify directory for Chroma persistence
220
+ embed_model = HuggingFaceEmbeddings()
221
+
222
+ vs = Chroma.from_documents(
223
+ documents=docs,
224
+ embedding=embed_model,
225
+ collection_name="rag_ESG",
226
+ persist_directory=persist_directory # Ensure persistence
227
+ )
228
+
229
+ doc_retriever_ESG = vs.as_retriever()
230
+
231
+ index = VectorStoreIndex.from_documents(llama_parse_documents)
232
+ query_engine = index.as_query_engine()
233
+
234
+ return doc_retriever_ESG, query_engine
235
+
236
+ #--------------
237
+ ESG_analysis_button_key = "ESG_strategy_button"
238
+
239
+ #---------------
240
+ def delete_files_and_folders(folder_path):
241
+ for root, dirs, files in os.walk(folder_path, topdown=False):
242
+ for file in files:
243
+ try:
244
+ os.unlink(os.path.join(root, file))
245
+ except Exception as e:
246
+ st.error(f"Error deleting {os.path.join(root, file)}: {e}")
247
+ for dir in dirs:
248
+ try:
249
+ os.rmdir(os.path.join(root, dir))
250
+ except Exception as e:
251
+ st.error(f"Error deleting directory {os.path.join(root, dir)}: {e}")
252
+ #---------------
253
+
254
+ uploaded_files_ESG = st.sidebar.file_uploader("Choose a Sustainability Report", accept_multiple_files=True, key="ESG_files")
255
+ for uploaded_file in uploaded_files_ESG:
256
+ st.write("filename:", uploaded_file.name)
257
+ def save_uploadedfile(uploadedfile):
258
+ with open(os.path.join("ESG_Documents",uploadedfile.name),"wb") as f:
259
+ f.write(uploadedfile.getbuffer())
260
+ return st.success("Saved File:{} to ESG_Documents".format(uploadedfile.name))
261
+ save_uploadedfile(uploaded_file)
262
+
263
+
264
+ #---------------
265
+ def ESG_strategy():
266
+ doc_retriever_ESG, _ = create_vector_database_ESG()
267
+
268
+ prompt_template = """<|system|>
269
+ You are a seasoned specialist in environmental, social and governance matters. You write expert analyses for institutional investors. Always use figures, nemerical and statistical data when possible. Output must have sub-headings in bold font and be fluent.<|end|>
270
+ <|user|>
271
+ Answer the {question} based on the information you find in context: {context} <|end|>
272
+ <|assistant|>"""
273
+
274
+ prompt = PromptTemplate(template=prompt_template, input_variables=["question", "context"])
275
+
276
+ qa = (
277
+ {
278
+ "context": doc_retriever_ESG,
279
+ "question": RunnablePassthrough(),
280
+ }
281
+ | prompt
282
+ | llm
283
+ | StrOutputParser()
284
+ )
285
+
286
+ ESG_answer_1 = qa.invoke("Give a summary what specific ESG measures the company has taken recently and compare these to the best practices.")
287
+ ESG_answer_2 = qa.invoke("Does the company's main business fall under the European Union's taxonomy regulation? Answer whether the company is taxonomy compliant under European Union Taxonomy Regulation?")
288
+ ESG_answer_3 = qa.invoke("Describe what specific ESG transparency commitments the company has given. Give details how the company has followed the Paris Treaty's obligation to limit globabl warming to 1.5 celcius degrees.")
289
+ ESG_answer_4 = qa.invoke("Does the company have carbon emissions reduction plan? Has the company reached its carbon dioxide reduction objectives? Set the company's carbon footprint by location and its development or equivalent figures in a table. List carbon dioxide emissions compared to turnover.")
290
+ ESG_answer_5 = qa.invoke("Describe and set out in a table the following specific information: (i) Scope 1 CO2 emissions, (ii) Scope 2 CO2 emissions, and (iii) Scope 3 CO2 emissions of the company for 2021, 2022 and 2023. List the material changes relating to these figures.")
291
+ ESG_answer_6 = qa.invoke("List in a table the company's energy and renewable energy usage for each material activity. Explain the main energy efficiency measures taken by the company.")
292
+ ESG_answer_7 = qa.invoke("Does the company follow UN Guiding Principles on Business and Human Rights, ILO Declaration on Fundamental Principles and Rights at Work or OECD Guidelines for Multinational Enterprises that involve affected communities?")
293
+ ESG_answer_8 = qa.invoke("List the environmental permits and certifications held by the company. Set out and explain any environmental procedures, investigations, and decisions taken against the company. Answer whether the company's locations or operations are connected to areas sensitive in relation to biodiversity.")
294
+ ESG_answer_9 = qa.invoke("Set out waste management produces by the company and possible waste into the soil. Describe if the company's real estates have hazardous waste.")
295
+ ESG_answer_10 = qa.invoke("What percentage of women are represented in the (i) board, (ii) executive directors, and (iii) upper management? Set out the measures taken to have the gender balance on the upper management of the company.")
296
+ ESG_answer_11 = qa.invoke("What policies has the company implemented to counter money laundering and corruption?")
297
+
298
+ ESG_output = f"**__Summary of ESG reporting and obligations:__** {ESG_answer_1} \n\n **__Compliance with taxonomy:__** \n\n {ESG_answer_2} \n\n **__Disclosure transparency:__** \n\n {ESG_answer_3} \n\n **__Carbon footprint:__** \n\n {ESG_answer_4} \n\n **__Carbon dioxide emissions:__** \n\n {ESG_answer_5} \n\n **__Renewable energy:__** \n\n {ESG_answer_6} \n\n **__Human rights compliance:__** \n\n {ESG_answer_7} \n\n **__Management and gender balance:__** \n\n {ESG_answer_8} \n\n **__Waste and other emissions:__** {ESG_answer_9} \n\n **__Gender equality:__** {ESG_answer_10} \n\n **__Anti-money laundering:__** {ESG_answer_11}"
299
+
300
+ with open("ESG_analysis.txt", 'w') as file:
301
+ file.write(ESG_output)
302
+
303
+ return ESG_output
304
+
305
+ #-------------
306
+ @st.cache_data
307
+ def generate_ESG_strategy() -> str:
308
+ ESG_output = ESG_strategy()
309
+ st.session_state.results["ESG_analysis_button_key"] = ESG_output
310
+ return ESG_output
311
+
312
+ #---------------
313
+ #@st.cache_data
314
+ def create_pdf():
315
+ text_file = "ESG_analysis.txt"
316
+ pdf = FPDF('P', 'mm', 'A4')
317
+ pdf.add_page()
318
+ pdf.set_margins(10, 10, 10)
319
+ pdf.set_font("Arial", size=15)
320
+ #image = "lt.png"
321
+ #pdf.image(image, w = 40)
322
+ # Add introductory lines
323
+ #pdf.cell(0, 10, txt="Company name", ln=1, align='C')
324
+ pdf.cell(0, 10, txt="Structured ESG Analysis", ln=2, align='C')
325
+ pdf.ln(5)
326
+
327
+ pdf.set_font("Arial", size=11)
328
+ try:
329
+ with open(text_file, 'r', encoding='utf-8') as f:
330
+ for line in f:
331
+ # Replace '\u2019' with a different character or string
332
+ #line = line.replace('\u2019', "'") # For example, replace with apostrophe
333
+ #line = line.replace('\u2265', "'") # For example, replace with apostrophe
334
+ #pdf.multi_cell(0, 6, txt=line, align='L')
335
+ pdf.multi_cell(0, 6, txt=line.encode('latin-1', 'replace').decode('latin-1'), align='L')
336
+ pdf.ln(5)
337
+ except UnicodeEncodeError:
338
+ print("UnicodeEncodeError: Some characters could not be encoded in Latin-1. Skipping...")
339
+ pass # Skip the lines causing UnicodeEncodeError
340
+
341
+ output_pdf_path = "ESG_analysis.pdf"
342
+ pdf.output(output_pdf_path)
343
+
344
+ #----------------
345
+ #llm = build_llm()
346
+
347
+ if 'results' not in st.session_state:
348
+ st.session_state.results = {
349
+ "ESG_analysis_button_key": {}
350
+ }
351
+
352
+ loaders = {'.pdf': PyMuPDFLoader,
353
+ '.xml': UnstructuredXMLLoader,
354
+ '.csv': CSVLoader,
355
+ }
356
+
357
+ def create_directory_loader(file_type, directory_path):
358
+ return DirectoryLoader(
359
+ path=directory_path,
360
+ glob=f"**/*{file_type}",
361
+ loader_cls=loaders[file_type],
362
+ )
363
+
364
+ strategies_container = st.container()
365
+ with strategies_container:
366
+ mrow1_col1, mrow1_col2 = st.columns(2)
367
+
368
+ st.sidebar.info("To get started, please upload the documents from the company you would like to analyze.")
369
+ button_container = st.sidebar.container()
370
+ if os.path.exists("ESG_analysis.txt"):
371
+ create_pdf()
372
+ with open("ESG_analysis.pdf", "rb") as pdf_file:
373
+ PDFbyte = pdf_file.read()
374
+
375
+ st.sidebar.download_button(label="Download Analyses",
376
+ data=PDFbyte,
377
+ file_name="strategy_sheet.pdf",
378
+ mime='application/octet-stream',
379
+ )
380
+
381
+ if button_container.button("Clear All"):
382
+
383
+ st.session_state.button_states = {
384
+ "ESG_analysis_button_key": False,
385
+ }
386
+
387
+ st.session_state.results = {}
388
+
389
+ st.session_state['history'] = []
390
+ st.session_state['generated'] = ["Let's discuss the ESG issues of the company πŸ€—"]
391
+ st.session_state['past'] = ["Hey ! πŸ‘‹"]
392
+ st.cache_data.clear()
393
+ st.cache_resource.clear()
394
+
395
+ # Check if the subfolder exists
396
+ if os.path.exists("ESG_Documents"):
397
+ for filename in os.listdir("ESG_Documents"):
398
+ file_path = os.path.join("ESG_Documents", filename)
399
+ try:
400
+ if os.path.isfile(file_path):
401
+ os.unlink(file_path)
402
+ except Exception as e:
403
+ st.error(f"Error deleting {file_path}: {e}")
404
+ else:
405
+ pass
406
+
407
+ with mrow1_col1:
408
+ st.subheader("Summary of the ESG Analysis")
409
+ st.info("This tool is designed to provide a comprehensive ESG risk analysis for institutional investors.")
410
+ button_container2 = st.container()
411
+ if "button_states" not in st.session_state:
412
+ st.session_state.button_states = {
413
+ "ESG_analysis_button_key": False,
414
+ }
415
+
416
+ if "results" not in st.session_state:
417
+ st.session_state.results = {}
418
+
419
+ if button_container2.button("ESG Analysis", key=ESG_analysis_button_key):
420
+ st.session_state.button_states[ESG_analysis_button_key] = True
421
+ result_generator = generate_ESG_strategy() # Call the generator function
422
+ st.session_state.results["ESG_analysis_output"] = result_generator
423
+
424
+ if "ESG_analysis_output" in st.session_state.results:
425
+ st.write(st.session_state.results["ESG_analysis_output"])
426
+ st.divider()
427
+
428
+ with mrow1_col2:
429
+ if "ESG_analysis_button_key" in st.session_state.results and st.session_state.results["ESG_analysis_button_key"]:
430
+
431
+ doc_retriever_ESG, query_engine = create_vector_database_ESG()
432
+
433
+ memory = ConversationBufferMemory(memory_key="chat_history", k=3, return_messages=True)
434
+ search = SerpAPIWrapper()
435
+
436
+ # Updated prompt templates to include chat history
437
+ def format_chat_history(chat_history):
438
+ """Format chat history as a single string for input to the chain."""
439
+ formatted_history = "\n".join([f"User: {entry['input']}\nAI: {entry['output']}" for entry in chat_history])
440
+ return formatted_history
441
+
442
+ prompt_ESG = PromptTemplate.from_template(
443
+ template="""
444
+ You are a seasoned finance specialist and a specialist in environmental, social, and governance matters.
445
+ Use figures, and numerical, and statistical data when possible. Never give false information, numbers or data.
446
+ Conversation history:
447
+ {chat_history}
448
+ Based on the context: {context}, answer the following question: {question}.
449
+ """
450
+ )
451
+
452
+ ESG_chain = (
453
+ {
454
+ "context": doc_retriever_ESG,
455
+ "chat_history": lambda _: format_chat_history(memory.load_memory_variables({})["chat_history"]),
456
+ "question": RunnablePassthrough(),
457
+ }
458
+ | prompt_ESG
459
+ | llm_tool
460
+ | StrOutputParser()
461
+ )
462
+
463
+ # Define the vector query engine tool
464
+ vector_query_tool_ESG = Tool(
465
+ name="Vector Query Engine ESG",
466
+ func=lambda query: query_engine.query(query), # Use query_engine to query the vector database
467
+ description="Useful for answering questions about specific ESG figures, data and specific statistics.",
468
+ )
469
+
470
+ tools = [
471
+ Tool(
472
+ name="ESG QA System",
473
+ func=ESG_chain.invoke,
474
+ description="Useful for answering general ESG questions related to the company. ",
475
+ ),
476
+ Tool(
477
+ name="Search Tool",
478
+ func=search.run,
479
+ description="Useful for answering financial, or general questions, but not ESG or sustainability questions.",
480
+ ),
481
+ vector_query_tool_ESG,
482
+ ]
483
+
484
+ # Initialize the agent with LCEL tools and memory
485
+ agent = initialize_agent(
486
+ tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, memory=memory, handle_parsing_errors=True)
487
+ def conversational_chat(query):
488
+ # Get the result from the agent
489
+ result = agent.invoke({"input": query, "chat_history": st.session_state['history']})
490
+
491
+ # Handle different response types
492
+ if isinstance(result, dict):
493
+ # Extract the main content if the result is a dictionary
494
+ result = result.get("output", "") # Adjust the key as needed based on your agent's output
495
+ elif isinstance(result, list):
496
+ # If the result is a list, join it into a single string
497
+ result = "\n".join(result)
498
+ elif not isinstance(result, str):
499
+ # Convert the result to a string if it is not already one
500
+ result = str(result)
501
+
502
+ # Add the query and the result to the session state
503
+ st.session_state['history'].append((query, result))
504
+
505
+ # Update memory with the conversation
506
+ memory.save_context({"input": query}, {"output": result})
507
+
508
+ # Return the result
509
+ return result
510
+
511
+ # Ensure session states are initialized
512
+ if 'history' not in st.session_state:
513
+ st.session_state['history'] = []
514
+
515
+ if 'generated' not in st.session_state:
516
+ st.session_state['generated'] = ["Let's discuss the ESG matters and financial matters πŸ€—"]
517
+
518
+ if 'past' not in st.session_state:
519
+ st.session_state['past'] = ["Hey ! πŸ‘‹"]
520
+
521
+ if 'input' not in st.session_state:
522
+ st.session_state['input'] = ""
523
+
524
+ # Streamlit layout
525
+ st.subheader("Discuss the ESG and financial matters")
526
+ st.info("This tool is designed to enable discussion about the ESG and financial matters concerning the company.")
527
+ response_container = st.container()
528
+ container = st.container()
529
+
530
+ with container:
531
+ with st.form(key='my_form'):
532
+ user_input = st.text_input("Query:", placeholder="What would you like to know about ESG and financial matters", key='input')
533
+ submit_button = st.form_submit_button(label='Send')
534
+ if submit_button and user_input:
535
+ output = conversational_chat(user_input)
536
+ st.session_state['past'].append(user_input)
537
+ st.session_state['generated'].append(output)
538
+ user_input = "Query:"
539
+ #st.session_state['input'] = ""
540
+ # Display generated responses
541
+ if st.session_state['generated']:
542
+ with response_container:
543
+ for i in range(len(st.session_state['generated'])):
544
+ message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="shapes")
545
+ message(st.session_state["generated"][i], key=str(i), avatar_style="icons")