import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader import langchain from htmlTemplates import css,bot_template,user_template,url,aiLogoUrl cohere_api_key="gf0VDS934ffUjm9XYGR7WBDyqVL9RPWI6CINzLje" def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdfReader = PdfReader(pdf) for Page in pdfReader.pages: text += Page.extract_text() return text def get_text_chunks(text): text_splitter = langchain.text_splitter.CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): embeddings = langchain.embeddings.CohereEmbeddings() vectorstore = langchain.vectorstores.FAISS.from_texts(texts=text_chunks,embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm = langchain.llms.Cohere() memory = langchain.memory.ConversationBufferMemory(memory_key = 'chat_history',return_messages=True) conversation_chain = langchain.chains.ConversationalRetrievalChain.from_llm( llm = llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question':user_question}) st.session_state.chat_history = response['chat_history'] for i,message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace("{{MSG}}",message.content), unsafe_allow_html=True) else: st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple pdfs", page_icon=":books:") st.write(css,unsafe_allow_html=True) st.markdown( '
', unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple pdfs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs=st.file_uploader("Upload your files here and click process",accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chai st.session_state.conversation = get_conversation_chain(vectorstore) if __name__=='__main__': main()