MohamedRashad commited on
Commit
1273148
·
1 Parent(s): 830753e

Integrate FluxPipeline and AutoencoderKL for enhanced image generation; add live preview helper functions and update requirements

Browse files
Files changed (3) hide show
  1. app.py +33 -13
  2. live_preview_helpers.py +166 -0
  3. requirements.txt +3 -0
app.py CHANGED
@@ -15,9 +15,16 @@ from trellis.pipelines import TrellisImageTo3DPipeline
15
  from trellis.representations import Gaussian, MeshExtractResult
16
  from trellis.utils import render_utils, postprocessing_utils
17
  from gradio_client import Client
 
 
18
 
19
  llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
20
- t2i_client = Client("multimodalart/FLUX.1-merged")
 
 
 
 
 
21
 
22
  def generate_t2i_prompt(item_name):
23
  llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
@@ -64,20 +71,33 @@ def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
64
  processed_image.save(f"{TMP_DIR}/{trial_id}.png")
65
  return trial_id, processed_image
66
 
 
67
  def generate_item_image(object_t2i_prompt):
68
- img_path = t2i_client.predict(
69
- prompt=object_t2i_prompt,
70
- seed=0,
71
- randomize_seed=True,
72
- width=1024,
73
- height=1024,
74
- guidance_scale=3.5,
75
- num_inference_steps=8,
76
- api_name="/infer"
77
- )[0]
78
- image = Image.open(img_path)
 
 
 
 
 
 
 
 
 
 
 
 
79
  trial_id, processed_image = preprocess_pil_image(image)
80
- return trial_id, processed_image
81
 
82
  MAX_SEED = np.iinfo(np.int32).max
83
  TMP_DIR = "/tmp/Trellis-demo"
 
15
  from trellis.representations import Gaussian, MeshExtractResult
16
  from trellis.utils import render_utils, postprocessing_utils
17
  from gradio_client import Client
18
+ from diffusers import FluxPipeline, AutoencoderKL
19
+ from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
20
 
21
  llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
22
+
23
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
24
+
25
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
26
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
27
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
28
 
29
  def generate_t2i_prompt(item_name):
30
  llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
 
71
  processed_image.save(f"{TMP_DIR}/{trial_id}.png")
72
  return trial_id, processed_image
73
 
74
+ @spaces.GPU
75
  def generate_item_image(object_t2i_prompt):
76
+ trial_id = ""
77
+ for image in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
78
+ prompt=object_t2i_prompt,
79
+ guidance_scale=3.5,
80
+ num_inference_steps=28,
81
+ width=1024,
82
+ height=1024,
83
+ generator=torch.Generator("cpu").manual_seed(0),
84
+ output_type="pil",
85
+ good_vae=good_vae,
86
+ ):
87
+ yield trial_id, image
88
+ # img_path = t2i_client.predict(
89
+ # prompt=object_t2i_prompt,
90
+ # seed=0,
91
+ # randomize_seed=True,
92
+ # width=1024,
93
+ # height=1024,
94
+ # guidance_scale=3.5,
95
+ # num_inference_steps=8,
96
+ # api_name="/infer"
97
+ # )[0]
98
+ # image = Image.open(img_path)
99
  trial_id, processed_image = preprocess_pil_image(image)
100
+ yield trial_id, processed_image
101
 
102
  MAX_SEED = np.iinfo(np.int32).max
103
  TMP_DIR = "/tmp/Trellis-demo"
live_preview_helpers.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ # Helper functions
7
+ def calculate_shift(
8
+ image_seq_len,
9
+ base_seq_len: int = 256,
10
+ max_seq_len: int = 4096,
11
+ base_shift: float = 0.5,
12
+ max_shift: float = 1.16,
13
+ ):
14
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
+ b = base_shift - m * base_seq_len
16
+ mu = image_seq_len * m + b
17
+ return mu
18
+
19
+ def retrieve_timesteps(
20
+ scheduler,
21
+ num_inference_steps: Optional[int] = None,
22
+ device: Optional[Union[str, torch.device]] = None,
23
+ timesteps: Optional[List[int]] = None,
24
+ sigmas: Optional[List[float]] = None,
25
+ **kwargs,
26
+ ):
27
+ if timesteps is not None and sigmas is not None:
28
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
+ if timesteps is not None:
30
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
+ timesteps = scheduler.timesteps
32
+ num_inference_steps = len(timesteps)
33
+ elif sigmas is not None:
34
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
+ timesteps = scheduler.timesteps
36
+ num_inference_steps = len(timesteps)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
+ timesteps = scheduler.timesteps
40
+ return timesteps, num_inference_steps
41
+
42
+ # FLUX pipeline function
43
+ @torch.inference_mode()
44
+ def flux_pipe_call_that_returns_an_iterable_of_images(
45
+ self,
46
+ prompt: Union[str, List[str]] = None,
47
+ prompt_2: Optional[Union[str, List[str]]] = None,
48
+ height: Optional[int] = None,
49
+ width: Optional[int] = None,
50
+ num_inference_steps: int = 28,
51
+ timesteps: List[int] = None,
52
+ guidance_scale: float = 3.5,
53
+ num_images_per_prompt: Optional[int] = 1,
54
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
+ latents: Optional[torch.FloatTensor] = None,
56
+ prompt_embeds: Optional[torch.FloatTensor] = None,
57
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
+ output_type: Optional[str] = "pil",
59
+ return_dict: bool = True,
60
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
+ max_sequence_length: int = 512,
62
+ good_vae: Optional[Any] = None,
63
+ ):
64
+ height = height or self.default_sample_size * self.vae_scale_factor
65
+ width = width or self.default_sample_size * self.vae_scale_factor
66
+
67
+ # 1. Check inputs
68
+ self.check_inputs(
69
+ prompt,
70
+ prompt_2,
71
+ height,
72
+ width,
73
+ prompt_embeds=prompt_embeds,
74
+ pooled_prompt_embeds=pooled_prompt_embeds,
75
+ max_sequence_length=max_sequence_length,
76
+ )
77
+
78
+ self._guidance_scale = guidance_scale
79
+ self._joint_attention_kwargs = joint_attention_kwargs
80
+ self._interrupt = False
81
+
82
+ # 2. Define call parameters
83
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
84
+ device = self._execution_device
85
+
86
+ # 3. Encode prompt
87
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
88
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
89
+ prompt=prompt,
90
+ prompt_2=prompt_2,
91
+ prompt_embeds=prompt_embeds,
92
+ pooled_prompt_embeds=pooled_prompt_embeds,
93
+ device=device,
94
+ num_images_per_prompt=num_images_per_prompt,
95
+ max_sequence_length=max_sequence_length,
96
+ lora_scale=lora_scale,
97
+ )
98
+ # 4. Prepare latent variables
99
+ num_channels_latents = self.transformer.config.in_channels // 4
100
+ latents, latent_image_ids = self.prepare_latents(
101
+ batch_size * num_images_per_prompt,
102
+ num_channels_latents,
103
+ height,
104
+ width,
105
+ prompt_embeds.dtype,
106
+ device,
107
+ generator,
108
+ latents,
109
+ )
110
+ # 5. Prepare timesteps
111
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
112
+ image_seq_len = latents.shape[1]
113
+ mu = calculate_shift(
114
+ image_seq_len,
115
+ self.scheduler.config.base_image_seq_len,
116
+ self.scheduler.config.max_image_seq_len,
117
+ self.scheduler.config.base_shift,
118
+ self.scheduler.config.max_shift,
119
+ )
120
+ timesteps, num_inference_steps = retrieve_timesteps(
121
+ self.scheduler,
122
+ num_inference_steps,
123
+ device,
124
+ timesteps,
125
+ sigmas,
126
+ mu=mu,
127
+ )
128
+ self._num_timesteps = len(timesteps)
129
+
130
+ # Handle guidance
131
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
+
133
+ # 6. Denoising loop
134
+ for i, t in enumerate(timesteps):
135
+ if self.interrupt:
136
+ continue
137
+
138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
+
140
+ noise_pred = self.transformer(
141
+ hidden_states=latents,
142
+ timestep=timestep / 1000,
143
+ guidance=guidance,
144
+ pooled_projections=pooled_prompt_embeds,
145
+ encoder_hidden_states=prompt_embeds,
146
+ txt_ids=text_ids,
147
+ img_ids=latent_image_ids,
148
+ joint_attention_kwargs=self.joint_attention_kwargs,
149
+ return_dict=False,
150
+ )[0]
151
+ # Yield intermediate result
152
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
+
157
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
158
+ torch.cuda.empty_cache()
159
+
160
+ # Final image using good_vae
161
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
162
+ latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
163
+ image = good_vae.decode(latents, return_dict=False)[0]
164
+ self.maybe_free_model_hooks()
165
+ torch.cuda.empty_cache()
166
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
requirements.txt CHANGED
@@ -1,5 +1,8 @@
1
  --extra-index-url https://download.pytorch.org/whl/cu121
2
 
 
 
 
3
  torch==2.4.0
4
  torchvision==0.19.0
5
  pillow==10.4.0
 
1
  --extra-index-url https://download.pytorch.org/whl/cu121
2
 
3
+ accelerate
4
+ sentencepiece
5
+ diffusers
6
  torch==2.4.0
7
  torchvision==0.19.0
8
  pillow==10.4.0