File size: 23,560 Bytes
1ce0fc2
 
 
32287b3
 
27e1ebb
32287b3
 
 
 
 
 
 
 
836dd96
32287b3
 
 
 
 
14626ab
32287b3
 
5c095cd
32287b3
 
 
 
 
 
 
836dd96
32287b3
 
836dd96
32287b3
 
f7f1ca1
32287b3
 
 
 
 
 
 
 
 
 
 
 
715c7b0
32287b3
 
 
7434833
 
32287b3
 
 
eecb045
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eecb045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32287b3
 
 
 
 
 
 
 
 
 
 
8e9da2c
32287b3
 
 
 
366fd1c
32287b3
715c7b0
8e9da2c
 
 
 
 
 
 
 
 
 
 
 
 
32287b3
9914b63
8e9da2c
920cc4d
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9914b63
8e9da2c
32287b3
 
 
 
 
 
 
 
 
715c7b0
32287b3
 
8e9da2c
eecb045
 
366fd1c
e5b7e3e
32287b3
366fd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32287b3
366fd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366fd1c
32287b3
366fd1c
 
eecb045
366fd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32287b3
366fd1c
32287b3
 
 
366fd1c
 
 
 
 
 
32287b3
 
 
 
 
 
 
 
836dd96
 
 
c493a61
836dd96
 
 
 
 
 
 
 
 
 
c493a61
836dd96
 
c493a61
 
 
836dd96
 
 
 
 
 
 
 
 
 
c493a61
836dd96
 
c493a61
 
 
836dd96
 
c493a61
836dd96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32287b3
 
 
f7f1ca1
32287b3
 
 
54f9225
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eecb045
041b736
eecb045
32287b3
eecb045
32287b3
eecb045
5c095cd
32287b3
 
715c7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
5c095cd
 
715c7b0
5c095cd
 
 
 
 
 
 
 
 
 
 
 
55002dc
5c095cd
 
 
 
 
 
 
 
 
 
 
 
 
55002dc
5c095cd
 
 
715c7b0
 
 
 
5c095cd
32287b3
aaa0ff6
 
55002dc
 
 
 
aaa0ff6
 
 
 
 
55002dc
aaa0ff6
 
32287b3
aaa0ff6
 
32287b3
 
f7f1ca1
 
 
 
836dd96
 
f7f1ca1
 
 
 
 
 
 
 
 
 
 
32287b3
f7f1ca1
 
 
 
32287b3
f7f1ca1
 
 
836dd96
 
 
 
 
 
 
f7f1ca1
32287b3
 
836dd96
32287b3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

import os.path as osp
import time
import argparse
import shutil
import random
from pathlib import Path
from typing import List
import json

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import PIL.Image as PImage
from torchvision.transforms.functional import to_tensor
from transformers import AutoTokenizer, T5EncoderModel
from huggingface_hub import hf_hub_download
import gradio as gr
import spaces

from models.infinity import Infinity
from models.basic import *
from utils.dynamic_resolution import dynamic_resolution_h_w, h_div_w_templates
from gradio_client import Client

torch._dynamo.config.cache_size_limit = 64
client = Client("Qwen/Qwen2.5-72B-Instruct")

# Define a function to download weights if not present
def download_infinity_weights(weights_path):
    try:
        model_file = weights_path / 'infinity_2b_reg.pth'
        if not model_file.exists():
            hf_hub_download(repo_id="FoundationVision/Infinity", filename="infinity_2b_reg.pth", local_dir=str(weights_path))
        
        vae_file = weights_path / 'infinity_vae_d32reg.pth'
        if not vae_file.exists():
            hf_hub_download(repo_id="FoundationVision/Infinity", filename="infinity_vae_d32reg.pth", local_dir=str(weights_path))
        
    except Exception as e:
        print(f"Error downloading weights: {e}")

def encode_prompt(text_tokenizer, text_encoder, prompt):
    print(f'prompt={prompt}')
    captions = [prompt]
    tokens = text_tokenizer(text=captions, max_length=512, padding='max_length', truncation=True, return_tensors='pt')  # todo: put this into dataset
    input_ids = tokens.input_ids.cuda(non_blocking=True) if torch.cuda.is_available() else tokens.input_ids
    mask = tokens.attention_mask.cuda(non_blocking=True) if torch.cuda.is_available() else tokens.attention_mask
    text_features = text_encoder(input_ids=input_ids, attention_mask=mask)['last_hidden_state'].float()
    lens: List[int] = mask.sum(dim=-1).tolist()
    cu_seqlens_k = F.pad(mask.sum(dim=-1).to(dtype=torch.int32).cumsum_(0), (1, 0))
    Ltext = max(lens)
    kv_compact = []
    for len_i, feat_i in zip(lens, text_features.unbind(0)):
        kv_compact.append(feat_i[:len_i])
    kv_compact = torch.cat(kv_compact, dim=0)
    text_cond_tuple = (kv_compact, lens, cu_seqlens_k, Ltext)
    return text_cond_tuple

def save_slim_model(infinity_model_path, save_file=None, device='cpu', key='gpt_fsdp'):
    print('[Save slim model]')
    full_ckpt = torch.load(infinity_model_path, map_location=device)
    infinity_slim = full_ckpt['trainer'][key]
    # ema_state_dict = cpu_d['trainer'].get('gpt_ema_fsdp', state_dict)
    if not save_file:
        save_file = osp.splitext(infinity_model_path)[0] + '-slim.pth'
    print(f'Save to {save_file}')
    torch.save(infinity_slim, save_file)
    print('[Save slim model] done')
    return save_file

def load_tokenizer(t5_path='google/flan-t5-xl'):
    """
    Load and configure the T5 tokenizer and encoder with optimizations.
    """
    try:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        bf16_supported = device.type == 'cuda' and torch.cuda.is_bf16_supported()
        dtype = torch.bfloat16 if bf16_supported else torch.float32

        tokenizer = AutoTokenizer.from_pretrained(
            t5_path,
            legacy=True,
            model_max_length=512,
            use_fast=True,
        )

        if device.type == 'cuda':
            torch.cuda.empty_cache()

        encoder = T5EncoderModel.from_pretrained(
            t5_path,
            torch_dtype=dtype,
        )

        encoder.eval().requires_grad_(False).to(device)

        if device.type == 'cuda' and not bf16_supported:
            encoder.half()

        return tokenizer, encoder

    except Exception as e:
        print(f"Error loading tokenizer/encoder: {str(e)}")
        raise RuntimeError("Failed to initialize text models") from e

def load_infinity(
    rope2d_each_sa_layer, 
    rope2d_normalized_by_hw, 
    use_scale_schedule_embedding, 
    pn, 
    use_bit_label, 
    add_lvl_embeding_only_first_block, 
    model_path='', 
    scale_schedule=None, 
    vae=None, 
    device=None,  # Make device optional
    model_kwargs=None,
    text_channels=2048,
    apply_spatial_patchify=0,
    use_flex_attn=False,
    bf16=True,
):
    print('[Loading Infinity]')
    
    # Set device if not provided
    if device is None:
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f'Using device: {device}')

    # Set autocast dtype based on bf16 and device support
    if bf16 and device == 'cuda' and torch.cuda.is_bf16_supported():
        autocast_dtype = torch.bfloat16
    else:
        autocast_dtype = torch.float32
        bf16 = False  # Disable bf16 if not supported

    text_maxlen = 512
    torch.cuda.empty_cache()

    with torch.amp.autocast(device_type=device, dtype=autocast_dtype), torch.no_grad():
        infinity_test: Infinity = Infinity(
            vae_local=vae, text_channels=text_channels, text_maxlen=text_maxlen,
            shared_aln=True, raw_scale_schedule=scale_schedule,
            checkpointing='full-block',
            customized_flash_attn=False,
            fused_norm=True,
            pad_to_multiplier=128,
            use_flex_attn=use_flex_attn,
            add_lvl_embeding_only_first_block=add_lvl_embeding_only_first_block,
            use_bit_label=use_bit_label,
            rope2d_each_sa_layer=rope2d_each_sa_layer,
            rope2d_normalized_by_hw=rope2d_normalized_by_hw,
            pn=pn,
            apply_spatial_patchify=apply_spatial_patchify,
            inference_mode=True,
            train_h_div_w_list=[1.0],
            **model_kwargs,
        ).to(device)

        print(f'[you selected Infinity with {model_kwargs=}] model size: {sum(p.numel() for p in infinity_test.parameters())/1e9:.2f}B, bf16={bf16}')

        if bf16:
            for block in infinity_test.unregistered_blocks:
                block.bfloat16()

        infinity_test.eval()
        infinity_test.requires_grad_(False)

        print('[Load Infinity weights]')
        state_dict = torch.load(model_path, map_location=device)
        print(infinity_test.load_state_dict(state_dict))
        
        # # Initialize random number generator on the correct device
        # infinity_test.rng = torch.Generator(device=device)
    
    return infinity_test

def transform(pil_img: PImage.Image, tgt_h: int, tgt_w: int) -> torch.Tensor:
    """
    Transform a PIL image to a tensor with target dimensions while preserving aspect ratio.
    
    Args:
        pil_img: PIL Image to transform
        tgt_h: Target height
        tgt_w: Target width
        
    Returns:
        torch.Tensor: Normalized tensor image in range [-1, 1]
    """
    if not isinstance(pil_img, PImage.Image):
        raise TypeError("Input must be a PIL Image")
    
    if tgt_h <= 0 or tgt_w <= 0:
        raise ValueError("Target dimensions must be positive")
        
    # Calculate resize dimensions preserving aspect ratio
    width, height = pil_img.size
    scale = min(tgt_w / width, tgt_h / height)
    new_width = int(width * scale)
    new_height = int(height * scale)
    
    # Resize using LANCZOS for best quality
    pil_img = pil_img.resize((new_width, new_height), resample=PImage.LANCZOS)
    
    # Create center crop
    arr = np.array(pil_img, dtype=np.uint8)
    
    # Calculate crop coordinates
    y1 = max(0, (new_height - tgt_h) // 2)
    x1 = max(0, (new_width - tgt_w) // 2)
    y2 = y1 + tgt_h
    x2 = x1 + tgt_w
    
    # Crop and convert to tensor
    arr = arr[y1:y2, x1:x2]
    
    # Convert to normalized tensor in one step
    return torch.from_numpy(arr.transpose(2, 0, 1)).float().div_(127.5).sub_(1)

def joint_vi_vae_encode_decode(
    vae: 'VAEModel',  # Type hint would be more specific with actual VAE class
    image_path: str | Path,
    scale_schedule: List[tuple],
    device: torch.device | str,
    tgt_h: int,
    tgt_w: int
) -> tuple[np.ndarray, np.ndarray, torch.Tensor]:
    """
    Encode and decode an image using a VAE model with joint visual-infinity processing.

    Args:
        vae: The VAE model instance
        image_path: Path to input image
        scale_schedule: List of scale tuples for processing
        device: Target device for computation
        tgt_h: Target height for the image
        tgt_w: Target width for the image

    Returns:
        tuple containing:
        - Original image as numpy array (uint8)
        - Reconstructed image as numpy array (uint8)
        - Bit indices tensor
        
    Raises:
        FileNotFoundError: If image file doesn't exist
        RuntimeError: If VAE processing fails
    """
    try:
        # Validate input path
        if not Path(image_path).exists():
            raise FileNotFoundError(f"Image not found at {image_path}")
            
        # Load and preprocess image
        pil_image = Image.open(image_path).convert('RGB')
        inp = transform(pil_image, tgt_h, tgt_w)
        inp = inp.unsqueeze(0).to(device)

        # Normalize scale schedule
        scale_schedule = [(s[0], s[1], s[2]) for s in scale_schedule]

        # Decide whether to use CPU or GPU
        device = 'cuda' if torch.cuda.is_available() else 'cpu'

        # Time the encoding/decoding operations
        with torch.amp.autocast(device, dtype=torch.bfloat16):
            encode_start = time.perf_counter()
            h, z, _, all_bit_indices, _, _ = vae.encode(
                inp, 
                scale_schedule=scale_schedule
            )
            encode_time = time.perf_counter() - encode_start

            decode_start = time.perf_counter()
            recons_img = vae.decode(z)[0]
            decode_time = time.perf_counter() - decode_start

        # Process reconstruction
        if recons_img.dim() == 4:
            recons_img = recons_img.squeeze(1)

        # Log performance metrics
        print(f'VAE encode: {encode_time:.2f}s, decode: {decode_time:.2f}s')
        print(f'Reconstruction shape: {recons_img.shape}, z shape: {z.shape}')

        # Convert to numpy arrays efficiently
        recons_img = (recons_img.add(1).div(2)
                     .permute(1, 2, 0)
                     .mul(255)
                     .cpu()
                     .numpy()
                     .astype(np.uint8))
        
        gt_img = (inp[0].add(1).div(2)
                 .permute(1, 2, 0)
                 .mul(255)
                 .cpu()
                 .numpy()
                 .astype(np.uint8))

        return gt_img, recons_img, all_bit_indices

    except Exception as e:
        print(f"Error in VAE processing: {str(e)}")
        raise RuntimeError("VAE processing failed") from e

def load_visual_tokenizer(args):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # load vae
    if args.vae_type in [16,18,20,24,32,64]:
        from models.bsq_vae.vae import vae_model
        schedule_mode = "dynamic"
        codebook_dim = args.vae_type
        codebook_size = 2**codebook_dim
        if args.apply_spatial_patchify:
            patch_size = 8
            encoder_ch_mult=[1, 2, 4, 4]
            decoder_ch_mult=[1, 2, 4, 4]
        else:
            patch_size = 16
            encoder_ch_mult=[1, 2, 4, 4, 4]
            decoder_ch_mult=[1, 2, 4, 4, 4]
        vae = vae_model(args.vae_path, schedule_mode, codebook_dim, codebook_size, patch_size=patch_size, 
                        encoder_ch_mult=encoder_ch_mult, decoder_ch_mult=decoder_ch_mult, test_mode=True).to(device)
    else:
        raise ValueError(f'vae_type={args.vae_type} not supported')
    return vae

def load_transformer(vae, args):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model_path = args.model_path

    if args.checkpoint_type == 'torch':
        slim_model_path = model_path
        print(f'Loading checkpoint from {slim_model_path}')
    else:
        raise ValueError(f"Unsupported checkpoint_type: {args.checkpoint_type}")

    model_configs = {
        'infinity_2b': dict(depth=32, embed_dim=2048, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=8),
        'infinity_layer12': dict(depth=12, embed_dim=768, num_heads=8, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4),
        'infinity_layer16': dict(depth=16, embed_dim=1152, num_heads=12, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4),
        'infinity_layer24': dict(depth=24, embed_dim=1536, num_heads=16, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4),
        'infinity_layer32': dict(depth=32, embed_dim=2080, num_heads=20, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4),
        'infinity_layer40': dict(depth=40, embed_dim=2688, num_heads=24, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4),
        'infinity_layer48': dict(depth=48, embed_dim=3360, num_heads=28, drop_path_rate=0.1, mlp_ratio=4, block_chunks=4),
    }

    kwargs_model = model_configs.get(args.model_type)
    if kwargs_model is None:
        raise ValueError(f"Unsupported model_type: {args.model_type}")

    infinity = load_infinity(
        rope2d_each_sa_layer=args.rope2d_each_sa_layer,
        rope2d_normalized_by_hw=args.rope2d_normalized_by_hw,
        use_scale_schedule_embedding=args.use_scale_schedule_embedding,
        pn=args.pn,
        use_bit_label=args.use_bit_label,
        add_lvl_embeding_only_first_block=args.add_lvl_embeding_only_first_block,
        model_path=slim_model_path,
        scale_schedule=None,
        vae=vae,
        device=device,
        model_kwargs=kwargs_model,
        text_channels=args.text_channels,
        apply_spatial_patchify=args.apply_spatial_patchify,
        use_flex_attn=args.use_flex_attn,
        bf16=args.bf16,
    )
    return infinity

def enhance_prompt(prompt):
    SYSTEM = """You are part of a team of bots that creates images. You work with an assistant bot that will draw anything you say.  

When given a user prompt, your role is to transform it into a creative, detailed, and vivid image description that focuses on visual and sensory features. Avoid directly referencing specific real-world people, places, or cultural knowledge unless explicitly requested by the user.  

### Guidelines for Generating the Output:  

1. **Output Format:**  
   Your response must be in the following dictionary format:  
   ```json
   {
     "prompt": "<enhanced image description>",
     "cfg": <cfg value>
   }
   ```  

2. **Enhancing the "prompt" field:**  
   - Use your creativity to expand short or vague prompts into highly detailed, visually rich descriptions.  
   - Focus on describing visual and sensory elements, such as colors, textures, shapes, lighting, and emotions.  
   - Avoid including known real-world information unless the user explicitly requests it. Instead, describe features that evoke the essence or appearance of the scene or subject.  
   - For particularly long user prompts (over 50 words), output them directly without refinement.  
   - Image descriptions must remain between 8-512 words. Any excess text will be ignored.  
   - If the user's request involves rendering specific text in the image, enclose that text in single quotation marks and prefix it with "the text".  

3. **Determining the "cfg" field:**  
   - If the image to be generated is likely to feature a clear face, set `"cfg": 1`.  
   - If the image does not prominently feature a face, set `"cfg": 3`.  

4. **Examples of Enhanced Prompts:**  
   - **User prompt:** "a tree"  
     **Enhanced prompt:** "A towering tree with a textured bark of intricate ridges and grooves stands under a pale blue sky. Its sprawling branches create an umbrella of rich, deep green foliage, with a few golden leaves scattered, catching the sunlight like tiny stars."  
     **Cfg:** `3`  

   - **User prompt:** "a person reading"  
     **Enhanced prompt:** "A figure sits on a cozy armchair, illuminated by the soft, warm glow of a nearby lamp. Their posture is relaxed, and their hands gently hold an open book. Shadows dance across their thoughtful expression, while the fabric of their clothing appears textured and soft, with subtle folds."  
     **Cfg:** `1`  

5. **Your Output:**  
   Always return a single dictionary containing both `"prompt"` and `"cfg"` fields. Avoid any additional commentary or explanations.  

Don't write anything except the dictionary in the output. (Don't start with ```)
"""
    result = client.predict(
            query=prompt,
            history=[],
            system=SYSTEM,
            api_name="/model_chat"
    )

    dict_of_inputs = json.loads(result[1][-1][-1])
    print(dict_of_inputs)

    return gr.update(value=dict_of_inputs["prompt"]), gr.update(value=float(dict_of_inputs['cfg']))

# Set up paths
weights_path = Path(__file__).parent / 'weights'
weights_path.mkdir(exist_ok=True)
download_infinity_weights(weights_path)

# Device setup
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
print(f"Using dtype: {dtype}")

# Define args
args = argparse.Namespace(
    pn='1M',
    model_path=str(weights_path / 'infinity_2b_reg.pth'),
    cfg_insertion_layer=0,
    vae_type=32,
    vae_path=str(weights_path / 'infinity_vae_d32reg.pth'),
    add_lvl_embeding_only_first_block=1,
    use_bit_label=1,
    model_type='infinity_2b',
    rope2d_each_sa_layer=1,
    rope2d_normalized_by_hw=2,
    use_scale_schedule_embedding=0,
    sampling_per_bits=1,
    text_channels=2048,
    apply_spatial_patchify=0,
    h_div_w_template=1.000,
    use_flex_attn=0,
    cache_dir='/dev/shm',
    checkpoint_type='torch',
    seed=0,
    bf16=1 if dtype == torch.bfloat16 else 0,
    save_file='tmp.jpg',
    enable_model_cache=False,
)

# Load models
print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB")
text_tokenizer, text_encoder = load_tokenizer(t5_path="google/flan-t5-xl")
print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB")
vae = load_visual_tokenizer(args)
print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB")
infinity = load_transformer(vae, args)
print(f"VRAM before forward pass: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB")

# Define the image generation function
@spaces.GPU
def generate_image(prompt, cfg, tau, h_div_w, seed):
    args.prompt = prompt
    args.cfg = cfg
    args.tau = tau
    args.h_div_w = h_div_w
    args.seed = seed
    
    # Find the closest h_div_w_template
    h_div_w_template_ = h_div_w_templates[np.argmin(np.abs(h_div_w_templates - h_div_w))]
    
    # Get scale_schedule based on h_div_w_template_
    scale_schedule = dynamic_resolution_h_w[h_div_w_template_][args.pn]['scales']
    scale_schedule = [(1, h, w) for (_, h, w) in scale_schedule]
    
    # Encode the prompt
    text_cond_tuple = encode_prompt(text_tokenizer, text_encoder, prompt)
    
    # Set device if not provided
    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    # Set autocast dtype based on bf16 and device support
    if device == 'cuda' and torch.cuda.is_bf16_supported():
        autocast_dtype = torch.bfloat16
    else:
        autocast_dtype = torch.float32

    torch.cuda.empty_cache()

    with torch.amp.autocast(device_type=device, dtype=autocast_dtype), torch.no_grad():
        infinity.rng = torch.Generator(device=device)
        _, _, img_list = infinity.autoregressive_infer_cfg(
            vae=vae,
            scale_schedule=scale_schedule,
            label_B_or_BLT=text_cond_tuple, g_seed=seed,
            B=1, negative_label_B_or_BLT=None, force_gt_Bhw=None,
            cfg_sc=3, cfg_list=[cfg] * len(scale_schedule), tau_list=[tau] * len(scale_schedule), top_k=900, top_p=0.97,
            returns_vemb=1, ratio_Bl1=None, gumbel=0, norm_cfg=False,
            cfg_exp_k=0.0, cfg_insertion_layer=[args.cfg_insertion_layer],
            vae_type=args.vae_type, softmax_merge_topk=-1,
            ret_img=True, trunk_scale=1000,
            gt_leak=0, gt_ls_Bl=None, inference_mode=True,
            sampling_per_bits=args.sampling_per_bits,
        )
        infinity.rng = torch.Generator(device="cpu")
    
    img = img_list[0]
    image = img.cpu().numpy()
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = np.uint8(image)
    
    return image


markdown_description = """### Instructions:

1. Enter a detailed prompt with rich visual features or use the "Enhance Prompt" button to generate a more detailed description.
2. Adjust the "CFG" and "Tau" sliders to control the strength and randomness of the output.
3. Use the "Aspect Ratio" slider to set the aspect ratio of the generated image.
4. Click the "Generate Image" button to create the image based on your prompt.

Arxiv Paper:
[Infinity: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis](https://arxiv.org/abs/2412.04431).
"""
html_header = """<div style="text-align: center; margin-bottom: 20px;">
    <h1>Infinity Image Generator by <a href="https://github.com/FoundationVision/Infinity" target="_blank" rel="noopener noreferrer">FoundationVision</a></h1>
    <p style="font-size: 14px; color: #888;">This is not the official implementation from the main developers!</p>
</div>"""
with gr.Blocks() as demo:
    gr.HTML(html_header)
    gr.Markdown(markdown_description)
    
    with gr.Row():
        with gr.Column():
            # Prompt Settings
            gr.Markdown("### Prompt Settings")
            prompt = gr.Textbox(label="Prompt", value="alien spaceship enterprise", placeholder="Enter your prompt here...")
            enhance_prompt_button = gr.Button("Enhance Prompt", variant="secondary")

            # Image Settings
            gr.Markdown("### Image Settings")
            with gr.Row():
                cfg = gr.Slider(label="CFG (Classifier-Free Guidance)", minimum=1, maximum=10, step=0.5, value=3, info="Controls the strength of the prompt.")
                tau = gr.Slider(label="Tau (Temperature)", minimum=0.1, maximum=1.0, step=0.1, value=0.5, info="Controls the randomness of the output.")
            with gr.Row():
                h_div_w = gr.Slider(label="Aspect Ratio (Height/Width)", minimum=0.5, maximum=2.0, step=0.1, value=1.0, info="Set the aspect ratio of the generated image.")
                seed = gr.Number(label="Seed", value=random.randint(0, 10000), info="Set a seed for reproducibility.")
            
            # Generate Button
            generate_button = gr.Button("Generate Image", variant="primary")
        
        with gr.Column():
            # Output Section
            gr.Markdown("### Generated Image")
            output_image = gr.Image(label="Generated Image", type="pil")
    
    # Error Handling
    error_message = gr.Textbox(label="Error Message", visible=False)
    
    # Link the enhance prompt button to the prompt enhancement function
    enhance_prompt_button.click(
        enhance_prompt,
        inputs=prompt,
        outputs=[prompt, cfg],
    )

    # Link the generate button to the image generation function
    generate_button.click(
        generate_image,
        inputs=[prompt, cfg, tau, h_div_w, seed],
        outputs=output_image
    )

# Launch the Gradio app
demo.launch()