""" Definitions of blocks of VAR transformer model. """ import math import os from functools import partial from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from timm.models.layers import DropPath, drop_path from torch.utils.checkpoint import checkpoint # Import flash_attn's attention from flash_attn import flash_attn_func # q, k, or v: BLHc, ret: BLHc from flash_attn import flash_attn_varlen_kvpacked_func # qkv: N3Hc, ret: NHc from torch.nn.functional import scaled_dot_product_attention as slow_attn # q, k, v: BHLc # Import flash_attn's fused ops try: from flash_attn.ops.layer_norm import dropout_add_layer_norm from flash_attn.ops.rms_norm import dropout_add_rms_norm from flash_attn.ops.rms_norm import rms_norm as rms_norm_impl from flash_attn.ops.fused_dense import fused_mlp_func flash_fused_op_installed = True except ImportError: dropout_add_layer_norm = dropout_add_rms_norm = fused_mlp_func = None flash_fused_op_installed = False def rms_norm_impl(x, weight, epsilon): return (x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True).add_(epsilon))) * weight def precompute_rope2d_freqs_grid(dim, dynamic_resolution_h_w, rope2d_normalized_by_hw, pad_to_multiplier=1, max_height=2048 // 16, max_width=2048 // 16, base=10000.0, device=None, scaling_factor=1.0): # split the dimension into half, one for x and one for y half_dim = dim // 2 inv_freq = 1.0 / (base ** (torch.arange(0, half_dim, 2, dtype=torch.int64).float().to(device) / half_dim)) # namely theta, 1 / (10000^(i/half_dim)), i=0,2,..., half_dim-2 t_height = torch.arange(max_height, device=device, dtype=torch.int64).type_as(inv_freq) t_width = torch.arange(max_width, device=device, dtype=torch.int64).type_as(inv_freq) t_height = t_height / scaling_factor freqs_height = torch.outer(t_height, inv_freq) # (max_height, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2), namely y*theta t_width = t_width / scaling_factor freqs_width = torch.outer(t_width, inv_freq) # (max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2), namely x*theta freqs_grid_map = torch.concat([ freqs_height[:, None, :].expand(-1, max_width, -1), # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2) freqs_width[None, :, :].expand(max_height, -1, -1), # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2) ], dim=-1) # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d)) freqs_grid_map = torch.stack([torch.cos(freqs_grid_map), torch.sin(freqs_grid_map)], dim=0) # (2, max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d)) rope2d_freqs_grid = {} for h_div_w in dynamic_resolution_h_w: scale_schedule = dynamic_resolution_h_w[h_div_w]['1M']['scales'] _, ph, pw = scale_schedule[-1] max_edge_length = freqs_grid_map.shape[1] if ph >= pw: uph, upw = max_edge_length, int(max_edge_length / ph * pw) else: uph, upw = int(max_edge_length / pw * ph), max_edge_length rope_cache_list = [] for (_, ph, pw) in scale_schedule: ph_mul_pw = ph * pw if rope2d_normalized_by_hw == 1: # downsample rope_cache = F.interpolate(freqs_grid_map[:, :uph, :upw, :].permute([0,3,1,2]), size=(ph, pw), mode='bilinear', align_corners=True) rope_cache = rope_cache.permute([0,2,3,1]) # (2, ph, pw, half_head_dim) elif rope2d_normalized_by_hw == 2: # star stylee _, uph, upw = scale_schedule[-1] indices = torch.stack([ (torch.arange(ph) * (uph / ph)).reshape(ph, 1).expand(ph, pw), (torch.arange(pw) * (upw / pw)).reshape(1, pw).expand(ph, pw), ], dim=-1).round().int() # (ph, pw, 2) indices = indices.reshape(-1, 2) # (ph*pw, 2) rope_cache = freqs_grid_map[:, indices[:,0], indices[:,1], :] # (2, ph*pw, half_head_dim) rope_cache = rope_cache.reshape(2, ph, pw, -1) elif rope2d_normalized_by_hw == 0: rope_cache = freqs_grid_map[:, :ph, :pw, :] # (2, ph, pw, half_head_dim) else: raise ValueError(f'Unknown rope2d_normalized_by_hw: {rope2d_normalized_by_hw}') rope_cache_list.append(rope_cache.reshape(2, ph_mul_pw, -1)) cat_rope_cache = torch.cat(rope_cache_list, 1) # (2, seq_len, half_head_dim) if cat_rope_cache.shape[1] % pad_to_multiplier: pad = torch.zeros(2, pad_to_multiplier - cat_rope_cache.shape[1] % pad_to_multiplier, half_dim) cat_rope_cache = torch.cat([cat_rope_cache, pad], dim=1) cat_rope_cache = cat_rope_cache[:,None,None,None] # (2, 1, 1, 1, seq_len, half_dim) for pn in dynamic_resolution_h_w[h_div_w]: scale_schedule = dynamic_resolution_h_w[h_div_w][pn]['scales'] tmp_scale_schedule = [(1, h, w) for _, h, w in scale_schedule] rope2d_freqs_grid[str(tuple(tmp_scale_schedule))] = cat_rope_cache return rope2d_freqs_grid def apply_rotary_emb(q, k, scale_schedule, rope2d_freqs_grid, pad_to_multiplier, rope2d_normalized_by_hw, scale_ind): qk = torch.stack((q, k), dim=0) #(2, batch_size, heads, seq_len, head_dim) device_type = qk.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): seq_len = qk.shape[3] start = 0 if scale_ind >= 1: assert len(scale_schedule[0]) == 3 start = np.sum([item[0] * item[1] * item[2] for item in scale_schedule[:scale_ind]]) rope2d_freqs_grid[str(tuple(scale_schedule))] = rope2d_freqs_grid[str(tuple(scale_schedule))].to(qk.device) assert start+seq_len <= rope2d_freqs_grid[str(tuple(scale_schedule))].shape[4] rope_cache = rope2d_freqs_grid[str(tuple(scale_schedule))][:, :, :, :, start:start+seq_len] # rope_cache shape: [2, 1, 1, 1, seq_len, half_head_dim] qk = qk.reshape(*qk.shape[:-1], -1, 2) #(2, batch_size, heads, seq_len, half_head_dim, 2) qk = torch.stack([ rope_cache[0] * qk[...,0] - rope_cache[1] * qk[...,1], rope_cache[1] * qk[...,0] + rope_cache[0] * qk[...,1], ], dim=-1) # (2, batch_size, heads, seq_len, half_head_dim, 2), here stack + reshape should not be concate qk = qk.reshape(*qk.shape[:-2], -1) #(2, batch_size, heads, seq_len, head_dim) q, k = qk.unbind(dim=0) # (batch_size, heads, seq_len, head_dim) return q, k class FastRMSNorm(nn.Module): def __init__(self, C, eps=1e-6, elementwise_affine=True): super().__init__() self.C = C self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: self.weight = nn.Parameter(torch.ones(C)) else: self.register_buffer('weight', torch.ones(C)) def forward(self, x): src_type = x.dtype return rms_norm_impl(x.float(), self.weight, epsilon=self.eps).to(src_type) def extra_repr(self) -> str: return f'C={self.C}, eps={self.eps:g}, elementwise_affine={self.elementwise_affine}' def get_dropout_layer(p): return nn.Dropout(p, inplace=True) if p > 0 else nn.Identity() class FFN(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, drop=0., fused_mlp=False): super().__init__() self.fused_mlp_func = fused_mlp_func if fused_mlp else None out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = nn.GELU(approximate='tanh') self.fc2 = nn.Linear(hidden_features, out_features) self.drop = get_dropout_layer(drop) self.heuristic = -1 def forward(self, x): if self.fused_mlp_func is not None: return self.drop(self.fused_mlp_func( x=x, weight1=self.fc1.weight, weight2=self.fc2.weight, bias1=self.fc1.bias, bias2=self.fc2.bias, activation='gelu_approx', save_pre_act=self.training, return_residual=False, checkpoint_lvl=0, heuristic=self.heuristic, process_group=None, )) else: return self.drop(self.fc2( self.act(self.fc1(x)) )) def extra_repr(self) -> str: return f'fused_mlp={self.fused_mlp_func is not None}' class FFNSwiGLU(nn.Module): def __init__(self, in_features, hidden_features, out_features=None, drop=0., fused_mlp=False): super().__init__() self.fused_mlp_func = None hidden_features = round(2 * hidden_features / 3 / 256) * 256 out_features = out_features or in_features self.fcg = nn.Linear(in_features, hidden_features, bias=False) self.fc1 = nn.Linear(in_features, hidden_features, bias=False) self.fc2 = nn.Linear(hidden_features, out_features, bias=False) self.drop = get_dropout_layer(drop) def forward(self, x): return self.drop(self.fc2( F.silu(self.fcg(x), inplace=True).mul_(self.fc1(x)) )) def extra_repr(self) -> str: return f'fused_mlp={self.fused_mlp_func is not None}' class SelfAttention(nn.Module): def __init__( self, embed_dim=768, num_heads=12, proj_drop=0., tau=1, cos_attn=False, customized_flash_attn=True, use_flex_attn=False, batch_size=2, pad_to_multiplier=1, rope2d_normalized_by_hw=0, ): """ :param embed_dim: model's width :param num_heads: num heads of multi-head attention :param proj_drop: always 0 for testing :param tau: always 1 :param cos_attn: always True: during attention, q and k will be L2-normalized and scaled by a head-wise learnable parameter self.scale_mul_1H11 :param customized_flash_attn: """ super().__init__() assert embed_dim % num_heads == 0 self.using_flash = customized_flash_attn self.num_heads, self.head_dim = num_heads, embed_dim // num_heads self.tau, self.cos_attn = tau, cos_attn if self.cos_attn: self.scale = 1 size = (1, 1, self.num_heads, 1) if self.using_flash else (1, self.num_heads, 1, 1) # size: 11H1 or 1H11 self.scale_mul_1H11 = nn.Parameter(torch.full(size=size, fill_value=4.0).log(), requires_grad=True) self.max_scale_mul = torch.log(torch.tensor(100)).item() else: self.scale = 1 / math.sqrt(self.head_dim) / self.tau self.mat_qkv = nn.Linear(embed_dim, embed_dim * 3, bias=False) self.q_bias, self.v_bias = nn.Parameter(torch.zeros(embed_dim)), nn.Parameter(torch.zeros(embed_dim)) self.register_buffer('zero_k_bias', torch.zeros(embed_dim)) self.proj = nn.Linear(embed_dim, embed_dim) self.proj_drop = get_dropout_layer(proj_drop) self.caching = False # kv caching: only used during inference self.cached_k = None # kv caching: only used during inference self.cached_v = None # kv caching: only used during inference self.batch_size = batch_size self.use_flex_attn = use_flex_attn self.pad_to_multiplier = pad_to_multiplier self.rope2d_normalized_by_hw = rope2d_normalized_by_hw def kv_caching(self, enable: bool): # kv caching: only used during inference self.caching = enable self.cached_k = None self.cached_v = None # NOTE: attn_bias_or_two_vector is None during inference def forward(self, x, attn_bias_or_two_vector: Union[torch.Tensor, Tuple[torch.IntTensor, torch.IntTensor]], attn_fn=None, scale_schedule=None, rope2d_freqs_grid=None, scale_ind=0): """ :param (fp32) x: shaped (B or batch_size, L or seq_length, C or hidden_dim); if seq-parallel is used, the `L` dim would be shared :param (fp32) attn_bias_or_two_vector: if not using_flash: a block-wise, lower-triangle matrix, like: [[[[0, -, -, -, -, -, -, -, -, -, -, -, -, -], [0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -], [0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -], [0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -], [0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]] where 0 means visible and - means invisible (-inf) else: a tuple of two 1-dim int vector (VAR_visible_kvlen, VAR_invisible_qlen) :return: shaped (B or batch_size, L or seq_length, C or hidden_dim); if seq-parallel is used, the `L` dim would be shared """ # x: fp32 B, L, C = x.shape # qkv: amp, bf16 qkv = F.linear(input=x, weight=self.mat_qkv.weight, bias=torch.cat((self.q_bias, self.zero_k_bias, self.v_bias))).view(B, L, 3, self.num_heads, self.head_dim) # BL3Hc if self.using_flash: q, k, v = qkv.unbind(dim=2); L_dim = 1 # q or k or v: all are shaped in (B:batch_size, L:seq_len, H:heads, c:head_dim) else: q, k, v = qkv.permute(2, 0, 3, 1, 4).unbind(dim=0); L_dim = 2 # q or k or v: all are shaped in (B:batch_size, H:heads, L:seq_len, c:head_dim) if self.cos_attn: # always True scale_mul = self.scale_mul_1H11.clamp_max(self.max_scale_mul).exp() # 11H1 (flash), or 1H11 (not flash) q = F.normalize(q, dim=-1, eps=1e-12).mul(scale_mul).contiguous() # fp32 k = F.normalize(k, dim=-1, eps=1e-12).contiguous() # fp32 v = v.contiguous() # bf16 else: # be contiguous, to make kernel happy q = q.contiguous() # bf16 k = k.contiguous() # bf16 v = v.contiguous() # bf16 if rope2d_freqs_grid is not None: q, k = apply_rotary_emb(q, k, scale_schedule, rope2d_freqs_grid, self.pad_to_multiplier, self.rope2d_normalized_by_hw, scale_ind) #, freqs_cis=freqs_cis) if self.caching: # kv caching: only used during inference if self.cached_k is None: self.cached_k = k; self.cached_v = v else: k = self.cached_k = torch.cat((self.cached_k, k), dim=L_dim); v = self.cached_v = torch.cat((self.cached_v, v), dim=L_dim) if self.using_flash: if attn_bias_or_two_vector is not None: # training kw = dict(VAR_visible_kvlen=attn_bias_or_two_vector[0], VAR_invisible_qlen=attn_bias_or_two_vector[1]) else: # inference (autoregressive sampling) kw = dict() oup = flash_attn_func(q.to(v.dtype), k.to(v.dtype), v, dropout_p=0, softmax_scale=self.scale, **kw).view(B, L, C) else: # if self.cos_attn: q, k are in fp32; v is in bf16 # else: q, k, v are in bf16 if self.use_flex_attn and attn_fn is not None: oup = attn_fn(q, k, v, scale=self.scale).transpose(1, 2).reshape(B, L, C) else: oup = slow_attn(query=q, key=k, value=v, scale=self.scale, attn_mask=attn_bias_or_two_vector, dropout_p=0).transpose(1, 2).reshape(B, L, C) # oup: bf16 return self.proj_drop(self.proj(oup)) def extra_repr(self) -> str: tail = '' return f'using_flash={self.using_flash}, tau={self.tau}, cos_attn={self.cos_attn}{tail}' class CrossAttention(nn.Module): def __init__( self, for_attn_pool=False, embed_dim=768, kv_dim=4096, num_heads=12, proj_drop=0., cos_attn=False, ): """ :param for_attn_pool: only used in VAR.text_proj_for_sos :param embed_dim: Q's dim :param kv_dim: K's and V's dim :param num_heads: num heads of multi-head attention :param proj_drop: proj drop out :param cos_attn: during attention, q and k will be L2-normalized and scaled by a head-wise learnable parameter self.scale_mul_1H11 """ cos_attn = False # TODO: never use cos attn in cross attention with T5 kv super().__init__() self.for_attn_pool = for_attn_pool self.embed_dim = embed_dim self.kv_dim = kv_dim assert embed_dim % num_heads == 0 self.num_heads, self.head_dim = num_heads, embed_dim // num_heads # =64 self.cos_attn = cos_attn if self.cos_attn: self.scale = 1 self.scale_mul_1H1 = nn.Parameter(torch.full(size=(1, self.num_heads, 1, 1), fill_value=4.0).log(), requires_grad=True) self.max_scale_mul = torch.log(torch.tensor(100)).item() else: self.scale = 1 / math.sqrt(self.head_dim) if for_attn_pool: q = torch.empty(1, self.num_heads, self.head_dim) nn.init.trunc_normal_(q, mean=0, std=math.sqrt(1 / embed_dim / 3)) self.mat_q = nn.Parameter(q) else: self.mat_q = nn.Linear(embed_dim, embed_dim, bias=True) self.mat_kv = nn.Linear(kv_dim, embed_dim*2, bias=False) self.v_bias = nn.Parameter(torch.zeros(embed_dim)) self.register_buffer('zero_k_bias', torch.zeros(embed_dim)) self.proj = nn.Linear(embed_dim, embed_dim) self.proj_drop = get_dropout_layer(proj_drop) def forward(self, q, ca_kv): """ :param q: shaped as (batch, seq_len, Q_dim) :param ca_kv: contains several vectors, each of which is shaped as (len_i, KV_dim). We have [len_1xKV_dim, len_2xKV_dim, len_3xKV_dim, ...] and lens == [len_1, len_2, len_3, ...] - kv_compact: shaped as (sum(lens), KV_dim) - cu_seqlens_k: cumulated sum of lens - max_seqlen_k: int, max(lens) NOTE: seq_len (num of Qs) can reach 10k; but len_i (num of KVs) must <= 256 :return: shaped as (batch, seq_len, Q_dim) """ kv_compact, cu_seqlens_k, max_seqlen_k = ca_kv N = kv_compact.shape[0] kv_compact = F.linear(kv_compact, weight=self.mat_kv.weight, bias=torch.cat((self.zero_k_bias, self.v_bias))).view(N, 2, self.num_heads, self.head_dim) # NC => N2Hc # attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens if not self.for_attn_pool: B, Lq = q.shape[:2] q_compact = self.mat_q(q).view(-1, self.num_heads, self.head_dim) else: B = cu_seqlens_k.shape[0] - 1 Lq = 1 q_compact = self.mat_q.repeat(B, 1, 1).to(dtype=kv_compact.dtype) if self.cos_attn: # always False scale_mul = self.scale_mul_1H1.clamp_max(self.max_scale_mul).exp() k, v = kv_compact.unbind(dim=1) q_compact = F.normalize(q_compact, dim=-1).mul(scale_mul) k = F.normalize(k, dim=-1) kv_compact = torch.stack((k, v), dim=1) q_compact = q_compact.contiguous() kv_compact = kv_compact.contiguous() cu_seqlens_q = torch.arange(0, Lq * (B+1), Lq, dtype=torch.int32, device=q_compact.device) if q_compact.dtype == torch.float32: # todo: fp16 or bf16? oup = flash_attn_varlen_kvpacked_func(q=q_compact.to(dtype=torch.bfloat16), kv=kv_compact.to(dtype=torch.bfloat16), cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=Lq, max_seqlen_k=max_seqlen_k, dropout_p=0, softmax_scale=self.scale).reshape(B, Lq, -1) oup = oup.float() else: oup = flash_attn_varlen_kvpacked_func(q=q_compact, kv=kv_compact, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=Lq, max_seqlen_k=max_seqlen_k, dropout_p=0, softmax_scale=self.scale).reshape(B, Lq, -1) return self.proj_drop(self.proj(oup)) def extra_repr(self) -> str: return f'Cq={self.embed_dim}, Ckv={self.kv_dim}, cos_attn={self.cos_attn}' class SelfAttnBlock(nn.Module): def __init__( self, embed_dim, kv_dim, cross_attn_layer_scale, cond_dim, act: bool, shared_aln: bool, norm_layer: partial, num_heads, mlp_ratio=4., drop=0., drop_path=0., tau=1, cos_attn=False, swiglu=False, customized_flash_attn=False, fused_mlp=False, fused_norm_func=None, checkpointing_sa_only=False, ): super(SelfAttnBlock, self).__init__() self.C, self.D = embed_dim, cond_dim self.drop_path_rate = drop_path self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.attn = SelfAttention( embed_dim=embed_dim, num_heads=num_heads, proj_drop=drop, tau=tau, cos_attn=cos_attn, customized_flash_attn=customized_flash_attn, attn_fn = attn_fn ) self.using_swiglu = swiglu self.ffn = (FFNSwiGLU if swiglu else FFN)(in_features=embed_dim, hidden_features=round(embed_dim * mlp_ratio / 256) * 256, drop=drop, fused_mlp=fused_mlp) self.ln_wo_grad = norm_layer(embed_dim, elementwise_affine=False) self.fused_norm_func = fused_norm_func self.norm_eps = norm_layer.keywords.get('eps', 1e-6) self.shared_aln = shared_aln if self.shared_aln: self.ada_gss = nn.Parameter(torch.randn(1, 1, 6, embed_dim) / embed_dim**0.5) else: lin = nn.Linear(cond_dim, 6*embed_dim) self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin) # NOTE: attn_bias_or_two_vector is None during inference def forward(self, x, cond_BD, ca_kv, attn_bias_or_two_vector): # todo: minGPT and vqgan also uses pre-norm, just like this, while MaskGiT uses post-norm with torch.cuda.amp.autocast(enabled=False): if self.shared_aln: # always True; (1, 1, 6, C) + (B, 1, 6, C) gamma1, gamma2, scale1, scale2, shift1, shift2 = (self.ada_gss + cond_BD).unbind(2) # 116C + B16C =unbind(2)=> 6 B1C else: gamma1, gamma2, scale1, scale2, shift1, shift2 = self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2) if self.fused_ada_norm is None: x = x + self.drop_path(self.attn( self.ln_wo_grad(x.float()).mul(scale1.add(1)).add_(shift1), attn_bias_or_two_vector=attn_bias_or_two_vector ).mul_(gamma1)) x = x + self.drop_path(self.ffn( self.ln_wo_grad(x.float()).mul(scale2.add(1)).add_(shift2) ).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP else: x = x + self.drop_path(self.attn(self.fused_ada_norm(C=self.C, eps=self.norm_eps, x=x, scale=scale1, shift=shift1), attn_bias_or_two_vector=attn_bias_or_two_vector).mul_(gamma1)) x = x + self.drop_path(self.ffn(self.fused_ada_norm(C=self.C, eps=self.norm_eps, x=x, scale=scale2, shift=shift2)).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP return x def extra_repr(self) -> str: return f'shared_aln={self.shared_aln}, fused_norm={self.fused_norm_func is not None}' class CrossAttnBlock(nn.Module): def __init__( self, embed_dim, kv_dim, cross_attn_layer_scale, cond_dim, act: bool, shared_aln: bool, norm_layer: partial, num_heads, mlp_ratio=4., drop=0., drop_path=0., tau=1, cos_attn=False, swiglu=False, customized_flash_attn=False, fused_mlp=False, fused_norm_func=None, checkpointing_sa_only=False, use_flex_attn=False, batch_size=2, pad_to_multiplier=1, apply_rope2d=False, rope2d_normalized_by_hw=False, ): super(CrossAttnBlock, self).__init__() self.C, self.D = embed_dim, cond_dim self.drop_path_rate = drop_path self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.sa = SelfAttention( embed_dim=embed_dim, num_heads=num_heads, proj_drop=drop, tau=tau, cos_attn=cos_attn, customized_flash_attn=customized_flash_attn, use_flex_attn=use_flex_attn, batch_size=batch_size, pad_to_multiplier=pad_to_multiplier, rope2d_normalized_by_hw=rope2d_normalized_by_hw, ) self.ca = CrossAttention(embed_dim=embed_dim, kv_dim=kv_dim, num_heads=num_heads, proj_drop=drop, cos_attn=cos_attn) self.using_swiglu = swiglu self.ffn = (FFNSwiGLU if swiglu else FFN)(in_features=embed_dim, hidden_features=round(embed_dim * mlp_ratio / 256) * 256, drop=drop, fused_mlp=fused_mlp) self.ln_wo_grad = norm_layer(embed_dim, elementwise_affine=False) self.fused_norm_func = fused_norm_func self.norm_eps = norm_layer.keywords.get('eps', 1e-6) self.ca_norm = norm_layer(embed_dim, elementwise_affine=True) self.shared_aln = shared_aln if self.shared_aln: # always True self.ada_gss = nn.Parameter(torch.randn(1, 1, 6, embed_dim) / embed_dim**0.5) else: lin = nn.Linear(cond_dim, 6*embed_dim) self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin) if cross_attn_layer_scale >= 0: self.ca_gamma = nn.Parameter(cross_attn_layer_scale * torch.ones(embed_dim), requires_grad=True) else: self.ca_gamma = 1 self.checkpointing_sa_only = checkpointing_sa_only # NOTE: attn_bias_or_two_vector is None during inference def forward(self, x, cond_BD, ca_kv, attn_bias_or_two_vector, attn_fn=None, scale_schedule=None, rope2d_freqs_grid=None, scale_ind=0): # todo: minGPT and vqgan also uses pre-norm, just like this, while MaskGiT uses post-norm with torch.cuda.amp.autocast(enabled=False): # disable half precision if self.shared_aln: # always True; (1, 1, 6, C) + (B, 1, 6, C) gamma1, gamma2, scale1, scale2, shift1, shift2 = (self.ada_gss + cond_BD).unbind(2) # 116C + B16C =unbind(2)=> 6 B1C else: gamma1, gamma2, scale1, scale2, shift1, shift2 = self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2) if self.fused_norm_func is None: x_sa = self.ln_wo_grad(x.float()).mul(scale1.add(1)).add_(shift1) if self.checkpointing_sa_only and self.training: x_sa = checkpoint(self.sa, x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, use_reentrant=False) else: x_sa = self.sa(x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid) x = x + self.drop_path(x_sa.mul_(gamma1)) x = x + self.ca(self.ca_norm(x), ca_kv).float().mul_(self.ca_gamma) x = x + self.drop_path(self.ffn( self.ln_wo_grad(x.float()).mul(scale2.add(1)).add_(shift2) ).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP else: x_sa = self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x, scale=scale1, shift=shift1) if self.checkpointing_sa_only and self.training: x_sa = checkpoint(self.sa, x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, use_reentrant=False) else: x_sa = self.sa(x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, scale_ind=scale_ind) x = x + self.drop_path(x_sa.mul_(gamma1)) x = x + self.ca(self.ca_norm(x), ca_kv).float().mul_(self.ca_gamma) x = x + self.drop_path(self.ffn(self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x, scale=scale2, shift=shift2)).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP return x def extra_repr(self) -> str: return f'shared_aln={self.shared_aln}, fused_norm={self.fused_norm_func is not None}, ca_gamma={"" if isinstance(self.ca_gamma, nn.Parameter) else self.ca_gamma}' class AdaLNBeforeHead(nn.Module): def __init__(self, C, D, act: bool, norm_layer: partial, fused_norm_func=None): # C: embed_dim, D: cond_dim super().__init__() self.C, self.D = C, D self.ln_wo_grad = norm_layer(C, elementwise_affine=False) self.fused_norm_func = fused_norm_func self.norm_eps = norm_layer.keywords.get('eps', 1e-6) lin = nn.Linear(D, 2*C) self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin) def forward(self, x_BLC: torch.Tensor, cond_BD: Optional[torch.Tensor]): scale, shift = self.ada_lin(cond_BD).view(-1, 1, 2, self.C).unbind(2) if self.fused_norm_func is None: return self.ln_wo_grad(x_BLC).mul(scale.add(1)).add_(shift) else: return self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x_BLC, scale=scale, shift=shift) def main(): dev = 'cpu' # 'cuda' if torch.cuda.is_available() else 'cpu' rng = torch.Generator(device=dev) # for Li in ([1, 3, 5], [1, 3]): rng.manual_seed(0) B, H, cq, ckv = 4, 8, 64, 96 Cq = H*cq Ckv = H*ckv Li = [5, 4, 7, 6] Lq = 10 L = max(Li) attn_bias = torch.zeros(B, 1, Lq, L, device=dev) for i, x in enumerate(Li): attn_bias[i, 0, :, x:] = -torch.inf q = torch.randn(B, Lq, H, cq, generator=rng, device=dev) k = torch.randn(B, L, H, ckv, generator=rng, device=dev) v = torch.randn(B, L, H, ckv, generator=rng, device=dev) tq, tk, tv = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) # BHLc seqlen_k = torch.tensor(Li, dtype=torch.int32, device=dev) cu_seqlens_k = F.pad(torch.cumsum(seqlen_k, dim=0, dtype=torch.torch.int32), (1, 0)) kv = torch.stack([k, v], dim=2) kv_compact = torch.cat([kv[i, :Li[i]] for i in range(B)], dim=0) ca = CrossAttention(for_attn_pool=False, embed_dim=Cq, kv_dim=Ckv, num_heads=H) CrossAttention.forward ca(q, (kv_compact, cu_seqlens_k, max(Li))).mean().backward() if __name__ == '__main__': main()