import gc import os import subprocess import time import re from typing import List, Optional, Tuple import torch from torch.distributed.fsdp import FullyShardedDataParallel as FSDP import glob import shutil from infinity.utils import arg_util import infinity.utils.dist as dist def glob_with_epoch_iter(pattern, recursive=False): def extract_ep_iter(filename): match = re.search(r'ep(\d+)-iter(\d+)', filename) if match: ep = int(match.group(1)) iter_idx = int(match.group(2)) return ep, iter_idx return 0, 0 return sorted(glob.glob(pattern, recursive=recursive), key=lambda x: extract_ep_iter(os.path.basename(x)), reverse=True) def glob_with_global_step(pattern, recursive=False): def extract_ep_iter(filename): match = re.search(r'global_step_(\d+)', filename) if match: iter_idx = int(match.group(1)) return iter_idx return 0 return sorted(glob.glob(pattern, recursive=recursive), key=lambda x: extract_ep_iter(os.path.basename(x)), reverse=True) class CKPTSaver(object): def __init__(self, is_master: bool, eval_milestone: List[Tuple[float, float]]): self.is_master = is_master self.time_stamp = torch.tensor([time.time() - 1e5, time.time()], device=dist.get_device()) self.sp_also: subprocess.Popen = None self.sp_best: subprocess.Popen = None self.sp_backup: subprocess.Popen = None self.acc_str, self.eval_milestone = '[no acc str]', eval_milestone def sav( self, args: arg_util.Args, g_it: int, next_ep: int, next_it: int, trainer, acc_str: Optional[str] = None, eval_milestone: Optional[List[Tuple[float, float]]] = None, also_save_to: str = None, best_save_to: str = None, ): self.time_stamp[1] = time.time() dist.broadcast(self.time_stamp, src_rank=0) last_save_time, cur_time = self.time_stamp.cpu().tolist() auto_save = cur_time - last_save_time > 20 * 60 need_save = also_save_to is not None or best_save_to is not None or next_ep == args.ep or auto_save if not need_save: return if acc_str is not None: self.acc_str = acc_str if eval_milestone is not None: self.eval_milestone = eval_milestone fname = f'ar-ckpt-giter{g_it//1000:03d}K-ep{next_ep}-iter{next_it}-last.pth' if args.gpt_training else f'ckpt-last.pth' local_out_ckpt = os.path.join(args.local_out_path, fname) # NOTE: all rank should call this state_dict(), not master only! trainer_state = trainer.state_dict() if self.is_master: stt = time.time() torch.save({ 'args': args.state_dict(), 'gpt_training': args.gpt_training, 'arch': args.model if args.gpt_training else args.vv, 'epoch': next_ep, 'iter': next_it, 'trainer': trainer_state, 'acc_str': self.acc_str, 'milestones': self.eval_milestone, }, local_out_ckpt) print(f'[CKPTSaver][rank00] start: {also_save_to=} {best_save_to=} {(next_ep == args.ep)=} {auto_save=} | see {local_out_ckpt}', flush=True) print(f'[CKPTSaver][rank00] dbg: {args.bed=}', flush=True) if auto_save: if self.sp_backup is not None: self.sp_backup.wait(timeout=300); self.sp_backup.kill(); self.sp_backup.communicate() self.time_stamp[0] = time.time() def auto_sync(source_filename, target_filename): cmd = f'cp -r {source_filename} {target_filename}' self.sp_backup = subprocess.Popen(cmd, shell=True, bufsize=-1) print(f'[CKPTSaver] auto_save cmd: {cmd}', flush=True) local_files = glob.glob(f"{args.local_out_path}/*") for filename in local_files: basename = os.path.basename(filename) target_filename = f'{args.bed}/{basename}' if basename.endswith('.pth'): if not os.path.isfile(target_filename): auto_sync(filename, target_filename) else: auto_sync(filename, target_filename) cost = time.time() - stt print(f'[CKPTSaver][rank00] cost: {cost:.2f}s', flush=True) del trainer_state time.sleep(3), gc.collect(), torch.cuda.empty_cache(), time.sleep(3) dist.barrier() def auto_resume(args: arg_util.Args, pattern='ckpt*.pth') -> Tuple[List[str], int, int, str, List[Tuple[float, float]], dict, dict]: info = [] resume = '' if args.auto_resume: for dd in (args.local_out_path, args.bed): all_ckpt = glob_with_epoch_iter(os.path.join(dd, pattern)) if len(all_ckpt): break if len(all_ckpt) == 0: info.append(f'[auto_resume] no ckpt found @ {pattern}') info.append(f'[auto_resume quit]') else: resume = all_ckpt[0] info.append(f'[auto_resume] auto load from @ {resume} ...') else: info.append(f'[auto_resume] disabled') info.append(f'[auto_resume quit]') if len(resume) == 0: return info, 0, 0, '[no acc str]', [], {}, {} print(f'auto resume from {resume}') try: ckpt = torch.load(resume, map_location='cpu') except Exception as e: info.append(f'[auto_resume] failed, {e} @ {resume}') if len(all_ckpt) < 2: return info, 0, 0, '[no acc str]', [], {}, {} try: # another chance to load from bytenas ckpt = torch.load(all_ckpt[1], map_location='cpu') except Exception as e: info.append(f'[auto_resume] failed, {e} @ {all_ckpt[1]}') return info, 0, 0, '[no acc str]', [], {}, {} dist.barrier() ep, it = ckpt['epoch'], ckpt['iter'] eval_milestone = ckpt.get('milestones', []) info.append(f'[auto_resume success] resume from ep{ep}, it{it}, eval_milestone: {eval_milestone}') return info, ep, it, ckpt.get('acc_str', '[no acc str]'), eval_milestone, ckpt['trainer'], ckpt['args']