import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import torch from ui import title, description, examples #from langs import LANGS model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") device = 0 if torch.cuda.is_available() else -1 src_lang = 'som_Latn' tgt_lang = "eng_Latn" def translate(text): translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang, device=device) result = translation_pipeline(text) return result[0]['translation_text'] gr.Interface( translate, [ gr.components.Textbox(label="Text") ], ["text"], ).launch()