import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import torch from langs import LANGS model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") source = 'som_Latn' target = "eng_Latn" def translate(source, target, text): translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target) result = translation_pipeline(text) return result[0]['translation_text'] gr.Interface( translate, [ gr.components.Dropdown(label="Source Language", choices=LANGS), gr.components.Dropdown(label="Target Language", choices=LANGS), gr.components.Textbox(label="Text") ], ["text"], ).launch()