File size: 877 Bytes
7e93a0e
 
 
 
 
 
 
a3f8f46
 
7e93a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from abc import abstractmethod
from typing import Any, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from ....modules.distributions.distributions import \
    DiagonalGaussianDistribution
from .base import AbstractRegularizer


class DiagonalGaussianRegularizer(AbstractRegularizer):
    def __init__(self, sample: bool = True):
        super().__init__()
        self.sample = sample

    def get_trainable_parameters(self) -> Any:
        yield from ()

    def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
        log = dict()
        posterior = DiagonalGaussianDistribution(z)
        if self.sample:
            z = posterior.sample()
        else:
            z = posterior.mode()
        kl_loss = posterior.kl()
        kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
        log["kl_loss"] = kl_loss
        return z, log