Spaces:
Configuration error
Configuration error
File size: 17,424 Bytes
7e93a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import logging
from abc import abstractmethod
from typing import Dict, Iterator, Literal, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch import einsum
from .base import AbstractRegularizer, measure_perplexity
logpy = logging.getLogger(__name__)
class AbstractQuantizer(AbstractRegularizer):
def __init__(self):
super().__init__()
# Define these in your init
# shape (N,)
self.used: Optional[torch.Tensor]
self.re_embed: int
self.unknown_index: Union[Literal["random"], int]
def remap_to_used(self, inds: torch.Tensor) -> torch.Tensor:
assert self.used is not None, "You need to define used indices for remap"
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(
device=new.device
)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds: torch.Tensor) -> torch.Tensor:
assert self.used is not None, "You need to define used indices for remap"
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)
@abstractmethod
def get_codebook_entry(
self, indices: torch.Tensor, shape: Optional[Tuple[int, ...]] = None
) -> torch.Tensor:
raise NotImplementedError()
def get_trainable_parameters(self) -> Iterator[torch.nn.Parameter]:
yield from self.parameters()
class GumbelQuantizer(AbstractQuantizer):
"""
credit to @karpathy:
https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!)
Gumbel Softmax trick quantizer
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016
https://arxiv.org/abs/1611.01144
"""
def __init__(
self,
num_hiddens: int,
embedding_dim: int,
n_embed: int,
straight_through: bool = True,
kl_weight: float = 5e-4,
temp_init: float = 1.0,
remap: Optional[str] = None,
unknown_index: str = "random",
loss_key: str = "loss/vq",
) -> None:
super().__init__()
self.loss_key = loss_key
self.embedding_dim = embedding_dim
self.n_embed = n_embed
self.straight_through = straight_through
self.temperature = temp_init
self.kl_weight = kl_weight
self.proj = nn.Conv2d(num_hiddens, n_embed, 1)
self.embed = nn.Embedding(n_embed, embedding_dim)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
else:
self.used = None
self.re_embed = n_embed
if unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
else:
assert unknown_index == "random" or isinstance(
unknown_index, int
), "unknown index needs to be 'random', 'extra' or any integer"
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.remap is not None:
logpy.info(
f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
def forward(
self, z: torch.Tensor, temp: Optional[float] = None, return_logits: bool = False
) -> Tuple[torch.Tensor, Dict]:
# force hard = True when we are in eval mode, as we must quantize.
# actually, always true seems to work
hard = self.straight_through if self.training else True
temp = self.temperature if temp is None else temp
out_dict = {}
logits = self.proj(z)
if self.remap is not None:
# continue only with used logits
full_zeros = torch.zeros_like(logits)
logits = logits[:, self.used, ...]
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard)
if self.remap is not None:
# go back to all entries but unused set to zero
full_zeros[:, self.used, ...] = soft_one_hot
soft_one_hot = full_zeros
z_q = einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
# + kl divergence to the prior loss
qy = F.softmax(logits, dim=1)
diff = (
self.kl_weight
* torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean()
)
out_dict[self.loss_key] = diff
ind = soft_one_hot.argmax(dim=1)
out_dict["indices"] = ind
if self.remap is not None:
ind = self.remap_to_used(ind)
if return_logits:
out_dict["logits"] = logits
return z_q, out_dict
def get_codebook_entry(self, indices, shape):
# TODO: shape not yet optional
b, h, w, c = shape
assert b * h * w == indices.shape[0]
indices = rearrange(indices, "(b h w) -> b h w", b=b, h=h, w=w)
if self.remap is not None:
indices = self.unmap_to_all(indices)
one_hot = (
F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float()
)
z_q = einsum("b n h w, n d -> b d h w", one_hot, self.embed.weight)
return z_q
class VectorQuantizer(AbstractQuantizer):
"""
____________________________________________
Discretization bottleneck part of the VQ-VAE.
Inputs:
- n_e : number of embeddings
- e_dim : dimension of embedding
- beta : commitment cost used in loss term,
beta * ||z_e(x)-sg[e]||^2
_____________________________________________
"""
def __init__(
self,
n_e: int,
e_dim: int,
beta: float = 0.25,
remap: Optional[str] = None,
unknown_index: str = "random",
sane_index_shape: bool = False,
log_perplexity: bool = False,
embedding_weight_norm: bool = False,
loss_key: str = "loss/vq",
):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.loss_key = loss_key
if not embedding_weight_norm:
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
else:
self.embedding = torch.nn.utils.weight_norm(
nn.Embedding(self.n_e, self.e_dim), dim=1
)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
else:
self.used = None
self.re_embed = n_e
if unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
else:
assert unknown_index == "random" or isinstance(
unknown_index, int
), "unknown index needs to be 'random', 'extra' or any integer"
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.remap is not None:
logpy.info(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
self.sane_index_shape = sane_index_shape
self.log_perplexity = log_perplexity
def forward(
self,
z: torch.Tensor,
) -> Tuple[torch.Tensor, Dict]:
do_reshape = z.ndim == 4
if do_reshape:
# # reshape z -> (batch, height, width, channel) and flatten
z = rearrange(z, "b c h w -> b h w c").contiguous()
else:
assert z.ndim < 4, "No reshaping strategy for inputs > 4 dimensions defined"
z = z.contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (
torch.sum(z_flattened**2, dim=1, keepdim=True)
+ torch.sum(self.embedding.weight**2, dim=1)
- 2
* torch.einsum(
"bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n")
)
)
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
loss_dict = {}
if self.log_perplexity:
perplexity, cluster_usage = measure_perplexity(
min_encoding_indices.detach(), self.n_e
)
loss_dict.update({"perplexity": perplexity, "cluster_usage": cluster_usage})
# compute loss for embedding
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean(
(z_q - z.detach()) ** 2
)
loss_dict[self.loss_key] = loss
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
if do_reshape:
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape(
z.shape[0], -1
) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
if self.sane_index_shape:
if do_reshape:
min_encoding_indices = min_encoding_indices.reshape(
z_q.shape[0], z_q.shape[2], z_q.shape[3]
)
else:
min_encoding_indices = rearrange(
min_encoding_indices, "(b s) 1 -> b s", b=z_q.shape[0]
)
loss_dict["min_encoding_indices"] = min_encoding_indices
return z_q, loss_dict
def get_codebook_entry(
self, indices: torch.Tensor, shape: Optional[Tuple[int, ...]] = None
) -> torch.Tensor:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
assert shape is not None, "Need to give shape for remap"
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
class EmbeddingEMA(nn.Module):
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5):
super().__init__()
self.decay = decay
self.eps = eps
weight = torch.randn(num_tokens, codebook_dim)
self.weight = nn.Parameter(weight, requires_grad=False)
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False)
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False)
self.update = True
def forward(self, embed_id):
return F.embedding(embed_id, self.weight)
def cluster_size_ema_update(self, new_cluster_size):
self.cluster_size.data.mul_(self.decay).add_(
new_cluster_size, alpha=1 - self.decay
)
def embed_avg_ema_update(self, new_embed_avg):
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
def weight_update(self, num_tokens):
n = self.cluster_size.sum()
smoothed_cluster_size = (
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
)
# normalize embedding average with smoothed cluster size
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
self.weight.data.copy_(embed_normalized)
class EMAVectorQuantizer(AbstractQuantizer):
def __init__(
self,
n_embed: int,
embedding_dim: int,
beta: float,
decay: float = 0.99,
eps: float = 1e-5,
remap: Optional[str] = None,
unknown_index: str = "random",
loss_key: str = "loss/vq",
):
super().__init__()
self.codebook_dim = embedding_dim
self.num_tokens = n_embed
self.beta = beta
self.loss_key = loss_key
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
else:
self.used = None
self.re_embed = n_embed
if unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
else:
assert unknown_index == "random" or isinstance(
unknown_index, int
), "unknown index needs to be 'random', 'extra' or any integer"
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.remap is not None:
logpy.info(
f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Dict]:
# reshape z -> (batch, height, width, channel) and flatten
# z, 'b c h w -> b h w c'
z = rearrange(z, "b c h w -> b h w c")
z_flattened = z.reshape(-1, self.codebook_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (
z_flattened.pow(2).sum(dim=1, keepdim=True)
+ self.embedding.weight.pow(2).sum(dim=1)
- 2 * torch.einsum("bd,nd->bn", z_flattened, self.embedding.weight)
) # 'n d -> d n'
encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(encoding_indices).view(z.shape)
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
if self.training and self.embedding.update:
# EMA cluster size
encodings_sum = encodings.sum(0)
self.embedding.cluster_size_ema_update(encodings_sum)
# EMA embedding average
embed_sum = encodings.transpose(0, 1) @ z_flattened
self.embedding.embed_avg_ema_update(embed_sum)
# normalize embed_avg and update weight
self.embedding.weight_update(self.num_tokens)
# compute loss for embedding
loss = self.beta * F.mse_loss(z_q.detach(), z)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
# z_q, 'b h w c -> b c h w'
z_q = rearrange(z_q, "b h w c -> b c h w")
out_dict = {
self.loss_key: loss,
"encodings": encodings,
"encoding_indices": encoding_indices,
"perplexity": perplexity,
}
return z_q, out_dict
class VectorQuantizerWithInputProjection(VectorQuantizer):
def __init__(
self,
input_dim: int,
n_codes: int,
codebook_dim: int,
beta: float = 1.0,
output_dim: Optional[int] = None,
**kwargs,
):
super().__init__(n_codes, codebook_dim, beta, **kwargs)
self.proj_in = nn.Linear(input_dim, codebook_dim)
self.output_dim = output_dim
if output_dim is not None:
self.proj_out = nn.Linear(codebook_dim, output_dim)
else:
self.proj_out = nn.Identity()
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Dict]:
rearr = False
in_shape = z.shape
if z.ndim > 3:
rearr = self.output_dim is not None
z = rearrange(z, "b c ... -> b (...) c")
z = self.proj_in(z)
z_q, loss_dict = super().forward(z)
z_q = self.proj_out(z_q)
if rearr:
if len(in_shape) == 4:
z_q = rearrange(z_q, "b (h w) c -> b c h w ", w=in_shape[-1])
elif len(in_shape) == 5:
z_q = rearrange(
z_q, "b (t h w) c -> b c t h w ", w=in_shape[-1], h=in_shape[-2]
)
else:
raise NotImplementedError(
f"rearranging not available for {len(in_shape)}-dimensional input."
)
return z_q, loss_dict
|