Spaces:
Configuration error
Configuration error
import math | |
from contextlib import nullcontext | |
from functools import partial | |
from typing import Dict, List, Optional, Tuple, Union | |
import kornia | |
import numpy as np | |
import open_clip | |
import torch | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
from omegaconf import ListConfig | |
from torch.utils.checkpoint import checkpoint | |
from transformers import (ByT5Tokenizer, CLIPTextModel, CLIPTokenizer, | |
T5EncoderModel, T5Tokenizer) | |
from ...modules.autoencoding.regularizers import DiagonalGaussianRegularizer | |
from ...modules.diffusionmodules.model import Encoder | |
from ...modules.diffusionmodules.openaimodel import Timestep | |
from ...modules.diffusionmodules.util import (extract_into_tensor, | |
make_beta_schedule) | |
from ...modules.distributions.distributions import DiagonalGaussianDistribution | |
from ...util import (append_dims, autocast, count_params, default, | |
disabled_train, expand_dims_like, instantiate_from_config) | |
class AbstractEmbModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self._is_trainable = None | |
self._ucg_rate = None | |
self._input_key = None | |
def is_trainable(self) -> bool: | |
return self._is_trainable | |
def ucg_rate(self) -> Union[float, torch.Tensor]: | |
return self._ucg_rate | |
def input_key(self) -> str: | |
return self._input_key | |
def is_trainable(self, value: bool): | |
self._is_trainable = value | |
def ucg_rate(self, value: Union[float, torch.Tensor]): | |
self._ucg_rate = value | |
def input_key(self, value: str): | |
self._input_key = value | |
def is_trainable(self): | |
del self._is_trainable | |
def ucg_rate(self): | |
del self._ucg_rate | |
def input_key(self): | |
del self._input_key | |
class GeneralConditioner(nn.Module): | |
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"} | |
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1} | |
def __init__(self, emb_models: Union[List, ListConfig]): | |
super().__init__() | |
embedders = [] | |
for n, embconfig in enumerate(emb_models): | |
embedder = instantiate_from_config(embconfig) | |
assert isinstance( | |
embedder, AbstractEmbModel | |
), f"embedder model {embedder.__class__.__name__} has to inherit from AbstractEmbModel" | |
embedder.is_trainable = embconfig.get("is_trainable", False) | |
embedder.ucg_rate = embconfig.get("ucg_rate", 0.0) | |
if not embedder.is_trainable: | |
embedder.train = disabled_train | |
for param in embedder.parameters(): | |
param.requires_grad = False | |
embedder.eval() | |
print( | |
f"Initialized embedder #{n}: {embedder.__class__.__name__} " | |
f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}" | |
) | |
if "input_key" in embconfig: | |
embedder.input_key = embconfig["input_key"] | |
elif "input_keys" in embconfig: | |
embedder.input_keys = embconfig["input_keys"] | |
else: | |
raise KeyError( | |
f"need either 'input_key' or 'input_keys' for embedder {embedder.__class__.__name__}" | |
) | |
embedder.legacy_ucg_val = embconfig.get("legacy_ucg_value", None) | |
if embedder.legacy_ucg_val is not None: | |
embedder.ucg_prng = np.random.RandomState() | |
embedders.append(embedder) | |
self.embedders = nn.ModuleList(embedders) | |
def possibly_get_ucg_val(self, embedder: AbstractEmbModel, batch: Dict) -> Dict: | |
assert embedder.legacy_ucg_val is not None | |
p = embedder.ucg_rate | |
val = embedder.legacy_ucg_val | |
for i in range(len(batch[embedder.input_key])): | |
if embedder.ucg_prng.choice(2, p=[1 - p, p]): | |
batch[embedder.input_key][i] = val | |
return batch | |
def forward( | |
self, batch: Dict, force_zero_embeddings: Optional[List] = None | |
) -> Dict: | |
output = dict() | |
if force_zero_embeddings is None: | |
force_zero_embeddings = [] | |
for embedder in self.embedders: | |
embedding_context = nullcontext if embedder.is_trainable else torch.no_grad | |
with embedding_context(): | |
if hasattr(embedder, "input_key") and (embedder.input_key is not None): | |
if embedder.legacy_ucg_val is not None: | |
batch = self.possibly_get_ucg_val(embedder, batch) | |
emb_out = embedder(batch[embedder.input_key]) | |
elif hasattr(embedder, "input_keys"): | |
emb_out = embedder(*[batch[k] for k in embedder.input_keys]) | |
assert isinstance( | |
emb_out, (torch.Tensor, list, tuple) | |
), f"encoder outputs must be tensors or a sequence, but got {type(emb_out)}" | |
if not isinstance(emb_out, (list, tuple)): | |
emb_out = [emb_out] | |
for emb in emb_out: | |
out_key = self.OUTPUT_DIM2KEYS[emb.dim()] | |
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None: | |
emb = ( | |
expand_dims_like( | |
torch.bernoulli( | |
(1.0 - embedder.ucg_rate) | |
* torch.ones(emb.shape[0], device=emb.device) | |
), | |
emb, | |
) | |
* emb | |
) | |
if ( | |
hasattr(embedder, "input_key") | |
and embedder.input_key in force_zero_embeddings | |
): | |
emb = torch.zeros_like(emb) | |
if out_key in output: | |
output[out_key] = torch.cat( | |
(output[out_key], emb), self.KEY2CATDIM[out_key] | |
) | |
else: | |
output[out_key] = emb | |
return output | |
def get_unconditional_conditioning( | |
self, | |
batch_c: Dict, | |
batch_uc: Optional[Dict] = None, | |
force_uc_zero_embeddings: Optional[List[str]] = None, | |
force_cond_zero_embeddings: Optional[List[str]] = None, | |
): | |
if force_uc_zero_embeddings is None: | |
force_uc_zero_embeddings = [] | |
ucg_rates = list() | |
for embedder in self.embedders: | |
ucg_rates.append(embedder.ucg_rate) | |
embedder.ucg_rate = 0.0 | |
c = self(batch_c, force_cond_zero_embeddings) | |
uc = self(batch_c if batch_uc is None else batch_uc, force_uc_zero_embeddings) | |
for embedder, rate in zip(self.embedders, ucg_rates): | |
embedder.ucg_rate = rate | |
return c, uc | |
class InceptionV3(nn.Module): | |
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception | |
port with an additional squeeze at the end""" | |
def __init__(self, normalize_input=False, **kwargs): | |
super().__init__() | |
from pytorch_fid import inception | |
kwargs["resize_input"] = True | |
self.model = inception.InceptionV3(normalize_input=normalize_input, **kwargs) | |
def forward(self, inp): | |
outp = self.model(inp) | |
if len(outp) == 1: | |
return outp[0].squeeze() | |
return outp | |
class IdentityEncoder(AbstractEmbModel): | |
def encode(self, x): | |
return x | |
def forward(self, x): | |
return x | |
class ClassEmbedder(AbstractEmbModel): | |
def __init__(self, embed_dim, n_classes=1000, add_sequence_dim=False): | |
super().__init__() | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
self.n_classes = n_classes | |
self.add_sequence_dim = add_sequence_dim | |
def forward(self, c): | |
c = self.embedding(c) | |
if self.add_sequence_dim: | |
c = c[:, None, :] | |
return c | |
def get_unconditional_conditioning(self, bs, device="cuda"): | |
uc_class = ( | |
self.n_classes - 1 | |
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) | |
uc = torch.ones((bs,), device=device) * uc_class | |
uc = {self.key: uc.long()} | |
return uc | |
class ClassEmbedderForMultiCond(ClassEmbedder): | |
def forward(self, batch, key=None, disable_dropout=False): | |
out = batch | |
key = default(key, self.key) | |
islist = isinstance(batch[key], list) | |
if islist: | |
batch[key] = batch[key][0] | |
c_out = super().forward(batch, key, disable_dropout) | |
out[key] = [c_out] if islist else c_out | |
return out | |
class FrozenT5Embedder(AbstractEmbModel): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__( | |
self, version="google/t5-v1_1-xxl", device="cuda", max_length=77, freeze=True | |
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=True, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
tokens = batch_encoding["input_ids"].to(self.device) | |
with torch.autocast("cuda", enabled=False): | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenByT5Embedder(AbstractEmbModel): | |
""" | |
Uses the ByT5 transformer encoder for text. Is character-aware. | |
""" | |
def __init__( | |
self, version="google/byt5-base", device="cuda", max_length=77, freeze=True | |
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = ByT5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=True, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
tokens = batch_encoding["input_ids"].to(self.device) | |
with torch.autocast("cuda", enabled=False): | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPEmbedder(AbstractEmbModel): | |
"""Uses the CLIP transformer encoder for text (from huggingface)""" | |
LAYERS = ["last", "pooled", "hidden"] | |
def __init__( | |
self, | |
version="openai/clip-vit-large-patch14", | |
device="cuda", | |
max_length=77, | |
freeze=True, | |
layer="last", | |
layer_idx=None, | |
always_return_pooled=False, | |
): # clip-vit-base-patch32 | |
super().__init__() | |
assert layer in self.LAYERS | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPTextModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
self.layer_idx = layer_idx | |
self.return_pooled = always_return_pooled | |
if layer == "hidden": | |
assert layer_idx is not None | |
assert 0 <= abs(layer_idx) <= 12 | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=True, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer( | |
input_ids=tokens, output_hidden_states=self.layer == "hidden" | |
) | |
if self.layer == "last": | |
z = outputs.last_hidden_state | |
elif self.layer == "pooled": | |
z = outputs.pooler_output[:, None, :] | |
else: | |
z = outputs.hidden_states[self.layer_idx] | |
if self.return_pooled: | |
return z, outputs.pooler_output | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenOpenCLIPEmbedder2(AbstractEmbModel): | |
""" | |
Uses the OpenCLIP transformer encoder for text | |
""" | |
LAYERS = ["pooled", "last", "penultimate"] | |
def __init__( | |
self, | |
arch="ViT-H-14", | |
version="laion2b_s32b_b79k", | |
device="cuda", | |
max_length=77, | |
freeze=True, | |
layer="last", | |
always_return_pooled=False, | |
legacy=True, | |
): | |
super().__init__() | |
assert layer in self.LAYERS | |
model, _, _ = open_clip.create_model_and_transforms( | |
arch, | |
device=torch.device("cpu"), | |
pretrained=version, | |
) | |
del model.visual | |
self.model = model | |
self.device = device | |
self.max_length = max_length | |
self.return_pooled = always_return_pooled | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
if self.layer == "last": | |
self.layer_idx = 0 | |
elif self.layer == "penultimate": | |
self.layer_idx = 1 | |
else: | |
raise NotImplementedError() | |
self.legacy = legacy | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
tokens = open_clip.tokenize(text) | |
z = self.encode_with_transformer(tokens.to(self.device)) | |
if not self.return_pooled and self.legacy: | |
return z | |
if self.return_pooled: | |
assert not self.legacy | |
return z[self.layer], z["pooled"] | |
return z[self.layer] | |
def encode_with_transformer(self, text): | |
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] | |
x = x + self.model.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) | |
if self.legacy: | |
x = x[self.layer] | |
x = self.model.ln_final(x) | |
return x | |
else: | |
# x is a dict and will stay a dict | |
o = x["last"] | |
o = self.model.ln_final(o) | |
pooled = self.pool(o, text) | |
x["pooled"] = pooled | |
return x | |
def pool(self, x, text): | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = ( | |
x[torch.arange(x.shape[0]), text.argmax(dim=-1)] | |
) | |
return x | |
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): | |
outputs = {} | |
for i, r in enumerate(self.model.transformer.resblocks): | |
if i == len(self.model.transformer.resblocks) - 1: | |
outputs["penultimate"] = x.permute(1, 0, 2) # LND -> NLD | |
if ( | |
self.model.transformer.grad_checkpointing | |
and not torch.jit.is_scripting() | |
): | |
x = checkpoint(r, x, attn_mask) | |
else: | |
x = r(x, attn_mask=attn_mask) | |
outputs["last"] = x.permute(1, 0, 2) # LND -> NLD | |
return outputs | |
def encode(self, text): | |
return self(text) | |
class FrozenOpenCLIPEmbedder(AbstractEmbModel): | |
LAYERS = [ | |
# "pooled", | |
"last", | |
"penultimate", | |
] | |
def __init__( | |
self, | |
arch="ViT-H-14", | |
version="laion2b_s32b_b79k", | |
device="cuda", | |
max_length=77, | |
freeze=True, | |
layer="last", | |
): | |
super().__init__() | |
assert layer in self.LAYERS | |
model, _, _ = open_clip.create_model_and_transforms( | |
arch, device=torch.device("cpu"), pretrained=version | |
) | |
del model.visual | |
self.model = model | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
if self.layer == "last": | |
self.layer_idx = 0 | |
elif self.layer == "penultimate": | |
self.layer_idx = 1 | |
else: | |
raise NotImplementedError() | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
tokens = open_clip.tokenize(text) | |
z = self.encode_with_transformer(tokens.to(self.device)) | |
return z | |
def encode_with_transformer(self, text): | |
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] | |
x = x + self.model.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.model.ln_final(x) | |
return x | |
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): | |
for i, r in enumerate(self.model.transformer.resblocks): | |
if i == len(self.model.transformer.resblocks) - self.layer_idx: | |
break | |
if ( | |
self.model.transformer.grad_checkpointing | |
and not torch.jit.is_scripting() | |
): | |
x = checkpoint(r, x, attn_mask) | |
else: | |
x = r(x, attn_mask=attn_mask) | |
return x | |
def encode(self, text): | |
return self(text) | |
class FrozenOpenCLIPImageEmbedder(AbstractEmbModel): | |
""" | |
Uses the OpenCLIP vision transformer encoder for images | |
""" | |
def __init__( | |
self, | |
arch="ViT-H-14", | |
version="laion2b_s32b_b79k", | |
device="cuda", | |
max_length=77, | |
freeze=True, | |
antialias=True, | |
ucg_rate=0.0, | |
unsqueeze_dim=False, | |
repeat_to_max_len=False, | |
num_image_crops=0, | |
output_tokens=False, | |
init_device=None, | |
): | |
super().__init__() | |
model, _, _ = open_clip.create_model_and_transforms( | |
arch, | |
device=torch.device(default(init_device, "cpu")), | |
pretrained=version, | |
) | |
del model.transformer | |
self.model = model | |
self.max_crops = num_image_crops | |
self.pad_to_max_len = self.max_crops > 0 | |
self.repeat_to_max_len = repeat_to_max_len and (not self.pad_to_max_len) | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.antialias = antialias | |
self.register_buffer( | |
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False | |
) | |
self.register_buffer( | |
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False | |
) | |
self.ucg_rate = ucg_rate | |
self.unsqueeze_dim = unsqueeze_dim | |
self.stored_batch = None | |
self.model.visual.output_tokens = output_tokens | |
self.output_tokens = output_tokens | |
def preprocess(self, x): | |
# normalize to [0,1] | |
x = kornia.geometry.resize( | |
x, | |
(224, 224), | |
interpolation="bicubic", | |
align_corners=True, | |
antialias=self.antialias, | |
) | |
x = (x + 1.0) / 2.0 | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, image, no_dropout=False): | |
z = self.encode_with_vision_transformer(image) | |
tokens = None | |
if self.output_tokens: | |
z, tokens = z[0], z[1] | |
z = z.to(image.dtype) | |
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0): | |
z = ( | |
torch.bernoulli( | |
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device) | |
)[:, None] | |
* z | |
) | |
if tokens is not None: | |
tokens = ( | |
expand_dims_like( | |
torch.bernoulli( | |
(1.0 - self.ucg_rate) | |
* torch.ones(tokens.shape[0], device=tokens.device) | |
), | |
tokens, | |
) | |
* tokens | |
) | |
if self.unsqueeze_dim: | |
z = z[:, None, :] | |
if self.output_tokens: | |
assert not self.repeat_to_max_len | |
assert not self.pad_to_max_len | |
return tokens, z | |
if self.repeat_to_max_len: | |
if z.dim() == 2: | |
z_ = z[:, None, :] | |
else: | |
z_ = z | |
return repeat(z_, "b 1 d -> b n d", n=self.max_length), z | |
elif self.pad_to_max_len: | |
assert z.dim() == 3 | |
z_pad = torch.cat( | |
( | |
z, | |
torch.zeros( | |
z.shape[0], | |
self.max_length - z.shape[1], | |
z.shape[2], | |
device=z.device, | |
), | |
), | |
1, | |
) | |
return z_pad, z_pad[:, 0, ...] | |
return z | |
def encode_with_vision_transformer(self, img): | |
# if self.max_crops > 0: | |
# img = self.preprocess_by_cropping(img) | |
if img.dim() == 5: | |
assert self.max_crops == img.shape[1] | |
img = rearrange(img, "b n c h w -> (b n) c h w") | |
img = self.preprocess(img) | |
if not self.output_tokens: | |
assert not self.model.visual.output_tokens | |
x = self.model.visual(img) | |
tokens = None | |
else: | |
assert self.model.visual.output_tokens | |
x, tokens = self.model.visual(img) | |
if self.max_crops > 0: | |
x = rearrange(x, "(b n) d -> b n d", n=self.max_crops) | |
# drop out between 0 and all along the sequence axis | |
x = ( | |
torch.bernoulli( | |
(1.0 - self.ucg_rate) | |
* torch.ones(x.shape[0], x.shape[1], 1, device=x.device) | |
) | |
* x | |
) | |
if tokens is not None: | |
tokens = rearrange(tokens, "(b n) t d -> b t (n d)", n=self.max_crops) | |
print( | |
f"You are running very experimental token-concat in {self.__class__.__name__}. " | |
f"Check what you are doing, and then remove this message." | |
) | |
if self.output_tokens: | |
return x, tokens | |
return x | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPT5Encoder(AbstractEmbModel): | |
def __init__( | |
self, | |
clip_version="openai/clip-vit-large-patch14", | |
t5_version="google/t5-v1_1-xl", | |
device="cuda", | |
clip_max_length=77, | |
t5_max_length=77, | |
): | |
super().__init__() | |
self.clip_encoder = FrozenCLIPEmbedder( | |
clip_version, device, max_length=clip_max_length | |
) | |
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) | |
print( | |
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, " | |
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params." | |
) | |
def encode(self, text): | |
return self(text) | |
def forward(self, text): | |
clip_z = self.clip_encoder.encode(text) | |
t5_z = self.t5_encoder.encode(text) | |
return [clip_z, t5_z] | |
class SpatialRescaler(nn.Module): | |
def __init__( | |
self, | |
n_stages=1, | |
method="bilinear", | |
multiplier=0.5, | |
in_channels=3, | |
out_channels=None, | |
bias=False, | |
wrap_video=False, | |
kernel_size=1, | |
remap_output=False, | |
): | |
super().__init__() | |
self.n_stages = n_stages | |
assert self.n_stages >= 0 | |
assert method in [ | |
"nearest", | |
"linear", | |
"bilinear", | |
"trilinear", | |
"bicubic", | |
"area", | |
] | |
self.multiplier = multiplier | |
self.interpolator = partial(torch.nn.functional.interpolate, mode=method) | |
self.remap_output = out_channels is not None or remap_output | |
if self.remap_output: | |
print( | |
f"Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing." | |
) | |
self.channel_mapper = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
bias=bias, | |
padding=kernel_size // 2, | |
) | |
self.wrap_video = wrap_video | |
def forward(self, x): | |
if self.wrap_video and x.ndim == 5: | |
B, C, T, H, W = x.shape | |
x = rearrange(x, "b c t h w -> b t c h w") | |
x = rearrange(x, "b t c h w -> (b t) c h w") | |
for stage in range(self.n_stages): | |
x = self.interpolator(x, scale_factor=self.multiplier) | |
if self.wrap_video: | |
x = rearrange(x, "(b t) c h w -> b t c h w", b=B, t=T, c=C) | |
x = rearrange(x, "b t c h w -> b c t h w") | |
if self.remap_output: | |
x = self.channel_mapper(x) | |
return x | |
def encode(self, x): | |
return self(x) | |
class LowScaleEncoder(nn.Module): | |
def __init__( | |
self, | |
model_config, | |
linear_start, | |
linear_end, | |
timesteps=1000, | |
max_noise_level=250, | |
output_size=64, | |
scale_factor=1.0, | |
): | |
super().__init__() | |
self.max_noise_level = max_noise_level | |
self.model = instantiate_from_config(model_config) | |
self.augmentation_schedule = self.register_schedule( | |
timesteps=timesteps, linear_start=linear_start, linear_end=linear_end | |
) | |
self.out_size = output_size | |
self.scale_factor = scale_factor | |
def register_schedule( | |
self, | |
beta_schedule="linear", | |
timesteps=1000, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
): | |
betas = make_beta_schedule( | |
beta_schedule, | |
timesteps, | |
linear_start=linear_start, | |
linear_end=linear_end, | |
cosine_s=cosine_s, | |
) | |
alphas = 1.0 - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) | |
(timesteps,) = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
assert ( | |
alphas_cumprod.shape[0] == self.num_timesteps | |
), "alphas have to be defined for each timestep" | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer("betas", to_torch(betas)) | |
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) | |
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer( | |
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) | |
) | |
self.register_buffer( | |
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) | |
) | |
self.register_buffer( | |
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)) | |
) | |
self.register_buffer( | |
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)) | |
) | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
* noise | |
) | |
def forward(self, x): | |
z = self.model.encode(x) | |
if isinstance(z, DiagonalGaussianDistribution): | |
z = z.sample() | |
z = z * self.scale_factor | |
noise_level = torch.randint( | |
0, self.max_noise_level, (x.shape[0],), device=x.device | |
).long() | |
z = self.q_sample(z, noise_level) | |
if self.out_size is not None: | |
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") | |
return z, noise_level | |
def decode(self, z): | |
z = z / self.scale_factor | |
return self.model.decode(z) | |
class ConcatTimestepEmbedderND(AbstractEmbModel): | |
"""embeds each dimension independently and concatenates them""" | |
def __init__(self, outdim): | |
super().__init__() | |
self.timestep = Timestep(outdim) | |
self.outdim = outdim | |
def forward(self, x): | |
if x.ndim == 1: | |
x = x[:, None] | |
assert len(x.shape) == 2 | |
b, dims = x.shape[0], x.shape[1] | |
x = rearrange(x, "b d -> (b d)") | |
emb = self.timestep(x) | |
emb = rearrange(emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) | |
return emb | |
class GaussianEncoder(Encoder, AbstractEmbModel): | |
def __init__( | |
self, weight: float = 1.0, flatten_output: bool = True, *args, **kwargs | |
): | |
super().__init__(*args, **kwargs) | |
self.posterior = DiagonalGaussianRegularizer() | |
self.weight = weight | |
self.flatten_output = flatten_output | |
def forward(self, x) -> Tuple[Dict, torch.Tensor]: | |
z = super().forward(x) | |
z, log = self.posterior(z) | |
log["loss"] = log["kl_loss"] | |
log["weight"] = self.weight | |
if self.flatten_output: | |
z = rearrange(z, "b c h w -> b (h w ) c") | |
return log, z | |
class VideoPredictionEmbedderWithEncoder(AbstractEmbModel): | |
def __init__( | |
self, | |
n_cond_frames: int, | |
n_copies: int, | |
encoder_config: dict, | |
sigma_sampler_config: Optional[dict] = None, | |
sigma_cond_config: Optional[dict] = None, | |
is_ae: bool = False, | |
scale_factor: float = 1.0, | |
disable_encoder_autocast: bool = False, | |
en_and_decode_n_samples_a_time: Optional[int] = None, | |
): | |
super().__init__() | |
self.n_cond_frames = n_cond_frames | |
self.n_copies = n_copies | |
self.encoder = instantiate_from_config(encoder_config) | |
self.sigma_sampler = ( | |
instantiate_from_config(sigma_sampler_config) | |
if sigma_sampler_config is not None | |
else None | |
) | |
self.sigma_cond = ( | |
instantiate_from_config(sigma_cond_config) | |
if sigma_cond_config is not None | |
else None | |
) | |
self.is_ae = is_ae | |
self.scale_factor = scale_factor | |
self.disable_encoder_autocast = disable_encoder_autocast | |
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time | |
def forward( | |
self, vid: torch.Tensor | |
) -> Union[ | |
torch.Tensor, | |
Tuple[torch.Tensor, torch.Tensor], | |
Tuple[torch.Tensor, dict], | |
Tuple[Tuple[torch.Tensor, torch.Tensor], dict], | |
]: | |
if self.sigma_sampler is not None: | |
b = vid.shape[0] // self.n_cond_frames | |
sigmas = self.sigma_sampler(b).to(vid.device) | |
if self.sigma_cond is not None: | |
sigma_cond = self.sigma_cond(sigmas) | |
sigma_cond = repeat(sigma_cond, "b d -> (b t) d", t=self.n_copies) | |
sigmas = repeat(sigmas, "b -> (b t)", t=self.n_cond_frames) | |
noise = torch.randn_like(vid) | |
vid = vid + noise * append_dims(sigmas, vid.ndim) | |
with torch.autocast("cuda", enabled=not self.disable_encoder_autocast): | |
n_samples = ( | |
self.en_and_decode_n_samples_a_time | |
if self.en_and_decode_n_samples_a_time is not None | |
else vid.shape[0] | |
) | |
n_rounds = math.ceil(vid.shape[0] / n_samples) | |
all_out = [] | |
for n in range(n_rounds): | |
if self.is_ae: | |
out = self.encoder.encode(vid[n * n_samples : (n + 1) * n_samples]) | |
else: | |
out = self.encoder(vid[n * n_samples : (n + 1) * n_samples]) | |
all_out.append(out) | |
vid = torch.cat(all_out, dim=0) | |
vid *= self.scale_factor | |
vid = rearrange(vid, "(b t) c h w -> b () (t c) h w", t=self.n_cond_frames) | |
vid = repeat(vid, "b 1 c h w -> (b t) c h w", t=self.n_copies) | |
return_val = (vid, sigma_cond) if self.sigma_cond is not None else vid | |
return return_val | |
class FrozenOpenCLIPImagePredictionEmbedder(AbstractEmbModel): | |
def __init__( | |
self, | |
open_clip_embedding_config: Dict, | |
n_cond_frames: int, | |
n_copies: int, | |
): | |
super().__init__() | |
self.n_cond_frames = n_cond_frames | |
self.n_copies = n_copies | |
self.open_clip = instantiate_from_config(open_clip_embedding_config) | |
def forward(self, vid): | |
vid = self.open_clip(vid) | |
vid = rearrange(vid, "(b t) d -> b t d", t=self.n_cond_frames) | |
vid = repeat(vid, "b t d -> (b s) t d", s=self.n_copies) | |
return vid | |