Spaces:
Configuration error
Configuration error
from pytorch_lightning import seed_everything | |
from scripts.demo.streamlit_helpers import * | |
SAVE_PATH = "outputs/demo/txt2img/" | |
SD_XL_BASE_RATIOS = { | |
"0.5": (704, 1408), | |
"0.52": (704, 1344), | |
"0.57": (768, 1344), | |
"0.6": (768, 1280), | |
"0.68": (832, 1216), | |
"0.72": (832, 1152), | |
"0.78": (896, 1152), | |
"0.82": (896, 1088), | |
"0.88": (960, 1088), | |
"0.94": (960, 1024), | |
"1.0": (1024, 1024), | |
"1.07": (1024, 960), | |
"1.13": (1088, 960), | |
"1.21": (1088, 896), | |
"1.29": (1152, 896), | |
"1.38": (1152, 832), | |
"1.46": (1216, 832), | |
"1.67": (1280, 768), | |
"1.75": (1344, 768), | |
"1.91": (1344, 704), | |
"2.0": (1408, 704), | |
"2.09": (1472, 704), | |
"2.4": (1536, 640), | |
"2.5": (1600, 640), | |
"2.89": (1664, 576), | |
"3.0": (1728, 576), | |
} | |
VERSION2SPECS = { | |
"SDXL-base-1.0": { | |
"H": 1024, | |
"W": 1024, | |
"C": 4, | |
"f": 8, | |
"is_legacy": False, | |
"config": "configs/inference/sd_xl_base.yaml", | |
"ckpt": "checkpoints/sd_xl_base_1.0.safetensors", | |
}, | |
"SDXL-base-0.9": { | |
"H": 1024, | |
"W": 1024, | |
"C": 4, | |
"f": 8, | |
"is_legacy": False, | |
"config": "configs/inference/sd_xl_base.yaml", | |
"ckpt": "checkpoints/sd_xl_base_0.9.safetensors", | |
}, | |
"SD-2.1": { | |
"H": 512, | |
"W": 512, | |
"C": 4, | |
"f": 8, | |
"is_legacy": True, | |
"config": "configs/inference/sd_2_1.yaml", | |
"ckpt": "checkpoints/v2-1_512-ema-pruned.safetensors", | |
}, | |
"SD-2.1-768": { | |
"H": 768, | |
"W": 768, | |
"C": 4, | |
"f": 8, | |
"is_legacy": True, | |
"config": "configs/inference/sd_2_1_768.yaml", | |
"ckpt": "checkpoints/v2-1_768-ema-pruned.safetensors", | |
}, | |
"SDXL-refiner-0.9": { | |
"H": 1024, | |
"W": 1024, | |
"C": 4, | |
"f": 8, | |
"is_legacy": True, | |
"config": "configs/inference/sd_xl_refiner.yaml", | |
"ckpt": "checkpoints/sd_xl_refiner_0.9.safetensors", | |
}, | |
"SDXL-refiner-1.0": { | |
"H": 1024, | |
"W": 1024, | |
"C": 4, | |
"f": 8, | |
"is_legacy": True, | |
"config": "configs/inference/sd_xl_refiner.yaml", | |
"ckpt": "checkpoints/sd_xl_refiner_1.0.safetensors", | |
}, | |
} | |
def load_img(display=True, key=None, device="cuda"): | |
image = get_interactive_image(key=key) | |
if image is None: | |
return None | |
if display: | |
st.image(image) | |
w, h = image.size | |
print(f"loaded input image of size ({w}, {h})") | |
width, height = map( | |
lambda x: x - x % 64, (w, h) | |
) # resize to integer multiple of 64 | |
image = image.resize((width, height)) | |
image = np.array(image.convert("RGB")) | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
return image.to(device) | |
def run_txt2img( | |
state, | |
version, | |
version_dict, | |
is_legacy=False, | |
return_latents=False, | |
filter=None, | |
stage2strength=None, | |
): | |
if version.startswith("SDXL-base"): | |
W, H = st.selectbox("Resolution:", list(SD_XL_BASE_RATIOS.values()), 10) | |
else: | |
H = st.number_input("H", value=version_dict["H"], min_value=64, max_value=2048) | |
W = st.number_input("W", value=version_dict["W"], min_value=64, max_value=2048) | |
C = version_dict["C"] | |
F = version_dict["f"] | |
init_dict = { | |
"orig_width": W, | |
"orig_height": H, | |
"target_width": W, | |
"target_height": H, | |
} | |
value_dict = init_embedder_options( | |
get_unique_embedder_keys_from_conditioner(state["model"].conditioner), | |
init_dict, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
) | |
sampler, num_rows, num_cols = init_sampling(stage2strength=stage2strength) | |
num_samples = num_rows * num_cols | |
if st.button("Sample"): | |
st.write(f"**Model I:** {version}") | |
out = do_sample( | |
state["model"], | |
sampler, | |
value_dict, | |
num_samples, | |
H, | |
W, | |
C, | |
F, | |
force_uc_zero_embeddings=["txt"] if not is_legacy else [], | |
return_latents=return_latents, | |
filter=filter, | |
) | |
return out | |
def run_img2img( | |
state, | |
version_dict, | |
is_legacy=False, | |
return_latents=False, | |
filter=None, | |
stage2strength=None, | |
): | |
img = load_img() | |
if img is None: | |
return None | |
H, W = img.shape[2], img.shape[3] | |
init_dict = { | |
"orig_width": W, | |
"orig_height": H, | |
"target_width": W, | |
"target_height": H, | |
} | |
value_dict = init_embedder_options( | |
get_unique_embedder_keys_from_conditioner(state["model"].conditioner), | |
init_dict, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
) | |
strength = st.number_input( | |
"**Img2Img Strength**", value=0.75, min_value=0.0, max_value=1.0 | |
) | |
sampler, num_rows, num_cols = init_sampling( | |
img2img_strength=strength, | |
stage2strength=stage2strength, | |
) | |
num_samples = num_rows * num_cols | |
if st.button("Sample"): | |
out = do_img2img( | |
repeat(img, "1 ... -> n ...", n=num_samples), | |
state["model"], | |
sampler, | |
value_dict, | |
num_samples, | |
force_uc_zero_embeddings=["txt"] if not is_legacy else [], | |
return_latents=return_latents, | |
filter=filter, | |
) | |
return out | |
def apply_refiner( | |
input, | |
state, | |
sampler, | |
num_samples, | |
prompt, | |
negative_prompt, | |
filter=None, | |
finish_denoising=False, | |
): | |
init_dict = { | |
"orig_width": input.shape[3] * 8, | |
"orig_height": input.shape[2] * 8, | |
"target_width": input.shape[3] * 8, | |
"target_height": input.shape[2] * 8, | |
} | |
value_dict = init_dict | |
value_dict["prompt"] = prompt | |
value_dict["negative_prompt"] = negative_prompt | |
value_dict["crop_coords_top"] = 0 | |
value_dict["crop_coords_left"] = 0 | |
value_dict["aesthetic_score"] = 6.0 | |
value_dict["negative_aesthetic_score"] = 2.5 | |
st.warning(f"refiner input shape: {input.shape}") | |
samples = do_img2img( | |
input, | |
state["model"], | |
sampler, | |
value_dict, | |
num_samples, | |
skip_encode=True, | |
filter=filter, | |
add_noise=not finish_denoising, | |
) | |
return samples | |
if __name__ == "__main__": | |
st.title("Stable Diffusion") | |
version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0) | |
version_dict = VERSION2SPECS[version] | |
if st.checkbox("Load Model"): | |
mode = st.radio("Mode", ("txt2img", "img2img"), 0) | |
else: | |
mode = "skip" | |
st.write("__________________________") | |
set_lowvram_mode(st.checkbox("Low vram mode", True)) | |
if version.startswith("SDXL-base"): | |
add_pipeline = st.checkbox("Load SDXL-refiner?", False) | |
st.write("__________________________") | |
else: | |
add_pipeline = False | |
seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9)) | |
seed_everything(seed) | |
save_locally, save_path = init_save_locally(os.path.join(SAVE_PATH, version)) | |
if mode != "skip": | |
state = init_st(version_dict, load_filter=True) | |
if state["msg"]: | |
st.info(state["msg"]) | |
model = state["model"] | |
is_legacy = version_dict["is_legacy"] | |
prompt = st.text_input( | |
"prompt", | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
) | |
if is_legacy: | |
negative_prompt = st.text_input("negative prompt", "") | |
else: | |
negative_prompt = "" # which is unused | |
stage2strength = None | |
finish_denoising = False | |
if add_pipeline: | |
st.write("__________________________") | |
version2 = st.selectbox("Refiner:", ["SDXL-refiner-1.0", "SDXL-refiner-0.9"]) | |
st.warning( | |
f"Running with {version2} as the second stage model. Make sure to provide (V)RAM :) " | |
) | |
st.write("**Refiner Options:**") | |
version_dict2 = VERSION2SPECS[version2] | |
state2 = init_st(version_dict2, load_filter=False) | |
st.info(state2["msg"]) | |
stage2strength = st.number_input( | |
"**Refinement strength**", value=0.15, min_value=0.0, max_value=1.0 | |
) | |
sampler2, *_ = init_sampling( | |
key=2, | |
img2img_strength=stage2strength, | |
specify_num_samples=False, | |
) | |
st.write("__________________________") | |
finish_denoising = st.checkbox("Finish denoising with refiner.", True) | |
if not finish_denoising: | |
stage2strength = None | |
if mode == "txt2img": | |
out = run_txt2img( | |
state, | |
version, | |
version_dict, | |
is_legacy=is_legacy, | |
return_latents=add_pipeline, | |
filter=state.get("filter"), | |
stage2strength=stage2strength, | |
) | |
elif mode == "img2img": | |
out = run_img2img( | |
state, | |
version_dict, | |
is_legacy=is_legacy, | |
return_latents=add_pipeline, | |
filter=state.get("filter"), | |
stage2strength=stage2strength, | |
) | |
elif mode == "skip": | |
out = None | |
else: | |
raise ValueError(f"unknown mode {mode}") | |
if isinstance(out, (tuple, list)): | |
samples, samples_z = out | |
else: | |
samples = out | |
samples_z = None | |
if add_pipeline and samples_z is not None: | |
st.write("**Running Refinement Stage**") | |
samples = apply_refiner( | |
samples_z, | |
state2, | |
sampler2, | |
samples_z.shape[0], | |
prompt=prompt, | |
negative_prompt=negative_prompt if is_legacy else "", | |
filter=state.get("filter"), | |
finish_denoising=finish_denoising, | |
) | |
if save_locally and samples is not None: | |
perform_save_locally(save_path, samples) | |