Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,691 Bytes
3c096a1 3adee15 24519bd 582cd46 72763fe c8dda36 3adee15 582cd46 3adee15 582cd46 3adee15 582cd46 3adee15 582cd46 3adee15 24519bd 72763fe 24519bd 3adee15 401a78c 3adee15 582cd46 3adee15 582cd46 3adee15 fd2f5c4 61d7fe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import gradio as gr
import spaces
import os
import torch
from PIL import Image
from pipeline_freescale import StableDiffusionXLPipeline
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
@spaces.GPU(duration=120)
def infer_gpu_part(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu):
pipe = pipe.to("cuda")
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(seed)
if not disable_freeu:
register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
)
return result
def infer(prompt, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt):
disable_freeu = 'Disable FreeU' in options
fast_mode = True
if output_size == "2048 x 2048":
resolutions_list = [[1024, 1024],
[2048, 2048]]
elif output_size == "1024 x 2048":
resolutions_list = [[512, 1024],
[1024, 2048]]
elif output_size == "2048 x 1024":
resolutions_list = [[1024, 512],
[2048, 1024]]
model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)
print('GPU starts')
result = infer_gpu_part(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu)
print('GPU ends')
image = result.images[0]
save_path = 'output.png'
image.save(save_path)
return save_path
examples = [
["A Enchanted illustration of a Palatial Ghost Explosion with a Mystical Sky, in the style of Eric, viewed from CamProX, Bokeh. High resolution, 8k, insanely detailed.",],
["Brunette pilot girl in a snowstorm, full body, moody lighting, intricate details, depth of field, outdoors, Fujifilm XT3, RAW, 8K UHD, film grain, Unreal Engine 5, ray tracing.",],
["A cute and adorable fluffy puppy wearing a witch hat in a Halloween autumn evening forest, falling autumn leaves, brown acorns on the ground, Halloween pumpkins spiderwebs, bats, and a witch’s broom.",],
["A Fantasy Realism illustration of a Heroic Phoenix Rising Adventurous with a Fantasy Waterfall, in the style of Illusia, viewed from Capture360XPro, Historical light. High resolution, 8k, insanely detailed.",],
]
css = """
#col-container {max-width: 640px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 15rem;
height: 36px;
}
div#share-btn-container > div {
flex-direction: row;
background: black;
align-items: center;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: inline-block;
margin: unset;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center;">FreeScale (unleash the resolution of SDXL)</h1>
<p style="text-align: center;">
FreeScale: Unleashing the Resolution of Diffusion Models via Tuning-Free Scale Fusion
</p>
<p style="text-align: center;">
<a href="https://arxiv.org/abs/2412.09626" target="_blank"><b>[arXiv]</b></a>
<a href="http://haonanqiu.com/projects/FreeScale.html" target="_blank"><b>[Project Page]</b></a>
<a href="https://github.com/ali-vilab/FreeScale" target="_blank"><b>[Code]</b></a>
</p>
"""
)
prompt_in = gr.Textbox(label="Prompt", placeholder="A panda walking and munching bamboo in a bamboo forest.")
with gr.Row():
with gr.Accordion('FreeScale Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
with gr.Row():
output_size = gr.Dropdown(["2048 x 2048", "1024 x 2048", "2048 x 1024"], value="2048 x 2048", label="Output Size (H x W)", info="Due to GPU constraints, run the demo locally for higher resolutions.")
with gr.Row():
ddim_steps = gr.Slider(label='DDIM Steps',
minimum=5,
maximum=200,
step=1,
value=50)
guidance_scale = gr.Slider(label='Guidance Scale',
minimum=1.0,
maximum=20.0,
step=0.1,
value=7.5)
with gr.Row():
cosine_scale = gr.Slider(label='Cosine Scale',
minimum=0,
maximum=10,
step=0.1,
value=2.0)
seed = gr.Slider(label='Random Seed',
minimum=0,
maximum=10000,
step=1,
value=123)
with gr.Row():
options = gr.CheckboxGroup(['Disable FreeU'], label='Options (NOT recommended to change)')
with gr.Row():
negative_prompt = gr.Textbox(label='Negative Prompt', value='blurry, ugly, duplicate, poorly drawn, deformed, mosaic')
submit_btn = gr.Button("Generate", variant='primary')
image_result = gr.Image(label="Image Output")
gr.Examples(examples=examples, inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt])
submit_btn.click(fn=infer,
inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt],
outputs=[image_result],
api_name="freescalehf")
if __name__ == "__main__":
demo.queue(max_size=8).launch() |