File size: 9,597 Bytes
3c096a1
 
 
3adee15
 
 
 
 
 
 
24519bd
72763fe
24519bd
 
 
72763fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8dda36
3adee15
 
 
 
 
 
 
 
 
 
 
 
72763fe
3adee15
 
 
 
72763fe
3adee15
 
 
 
72763fe
3adee15
 
 
 
72763fe
3adee15
 
 
 
24519bd
72763fe
24519bd
3adee15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401a78c
3adee15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd2f5c4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
import spaces

import os
import torch
from PIL import Image

from pipeline_freescale import StableDiffusionXLPipeline
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d

@spaces.GPU(duration=120)
def infer_gpu_fast(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu):
    pipe = pipe.to("cuda") 
    generator = torch.Generator(device='cuda')
    generator = generator.manual_seed(seed)
    if not disable_freeu:
        register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
        register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
    result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
                num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
                resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
                )
    return result

@spaces.GPU(duration=240)
def infer_gpu_mid(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu):
    pipe = pipe.to("cuda") 
    generator = torch.Generator(device='cuda')
    generator = generator.manual_seed(seed)
    if not disable_freeu:
        register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
        register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
    result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
                num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
                resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
                )
    return result

@spaces.GPU(duration=360)
def infer_gpu_slow(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu):
    pipe = pipe.to("cuda") 
    generator = torch.Generator(device='cuda')
    generator = generator.manual_seed(seed)
    if not disable_freeu:
        register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
        register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
    result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
                num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
                resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
                )
    return result

def infer(prompt, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt):

    disable_freeu = 'Disable FreeU' in options
    fast_mode = 'Fast Mode' in options
    if output_size == "2048 x 2048":
        resolutions_list = [[1024, 1024],
                            [2048, 2048]]
        infer_gpu_part = infer_gpu_fast
    elif output_size == "2048 x 4096":
        resolutions_list = [[512, 1024],
                            [1024, 2048],
                            [2048, 4096]]
        infer_gpu_part = infer_gpu_mid
    elif output_size == "4096 x 2048":
        resolutions_list = [[1024, 512],
                            [2048, 1024],
                            [4096, 2048]]
        infer_gpu_part = infer_gpu_mid
    elif output_size == "4096 x 4096":
        resolutions_list = [[1024, 1024],
                            [2048, 2048],
                            [4096, 4096]]
        infer_gpu_part = infer_gpu_slow

    model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
    pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)

    print('GPU starts')
    result = infer_gpu_part(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu)
    print('GPU ends')

    image = result.images[0]
    save_path = 'output.png'
    image.save(save_path)

    return save_path


examples = [
    ["A Enchanted illustration of a Palatial Ghost Explosion with a Mystical Sky, in the style of Eric, viewed from CamProX, Bokeh. High resolution, 8k, insanely detailed.",],
    ["Brunette pilot girl in a snowstorm, full body, moody lighting, intricate details, depth of field, outdoors, Fujifilm XT3, RAW, 8K UHD, film grain, Unreal Engine 5, ray tracing.",],
    ["A cute and adorable fluffy puppy wearing a witch hat in a Halloween autumn evening forest, falling autumn leaves, brown acorns on the ground, Halloween pumpkins spiderwebs, bats, and a witch’s broom.",],
    ["A Fantasy Realism illustration of a Heroic Phoenix Rising Adventurous with a Fantasy Waterfall, in the style of Illusia, viewed from Capture360XPro, Historical light. High resolution, 8k, insanely detailed.",],
]

css = """
#col-container {max-width: 640px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
  animation: spin 1s linear infinite;
}
@keyframes spin {
  from {
      transform: rotate(0deg);
  }
  to {
      transform: rotate(360deg);
  }
}
#share-btn-container {
  display: flex; 
  padding-left: 0.5rem !important; 
  padding-right: 0.5rem !important; 
  background-color: #000000; 
  justify-content: center; 
  align-items: center; 
  border-radius: 9999px !important; 
  max-width: 15rem;
  height: 36px;
}
div#share-btn-container > div {
    flex-direction: row;
    background: black;
    align-items: center;
}
#share-btn-container:hover {
  background-color: #060606;
}
#share-btn {
  all: initial; 
  color: #ffffff;
  font-weight: 600; 
  cursor:pointer; 
  font-family: 'IBM Plex Sans', sans-serif; 
  margin-left: 0.5rem !important; 
  padding-top: 0.5rem !important; 
  padding-bottom: 0.5rem !important;
  right:0;
}
#share-btn * {
  all: unset;
}
#share-btn-container div:nth-child(-n+2){
  width: auto !important;
  min-height: 0px !important;
}
#share-btn-container .wrap {
  display: none !important;
}
#share-btn-container.hidden {
  display: none!important;
}
img[src*='#center'] { 
    display: inline-block;
    margin: unset;
}
.footer {
        margin-bottom: 45px;
        margin-top: 10px;
        text-align: center;
        border-bottom: 1px solid #e5e5e5;
    }
    .footer>p {
        font-size: .8rem;
        display: inline-block;
        padding: 0 10px;
        transform: translateY(10px);
        background: white;
    }
    .dark .footer {
        border-color: #303030;
    }
    .dark .footer>p {
        background: #0b0f19;
    }
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            <h1 style="text-align: center;">FreeScale (unleash the resolution of SDXL)</h1>
            <p style="text-align: center;">
            FreeScale: Unleashing the Resolution of Diffusion Models via Tuning-Free Scale Fusion
            </p>
            <p style="text-align: center;">
            <a href="https://arxiv.org/abs/2412.09626" target="_blank"><b>[arXiv]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
            <a href="http://haonanqiu.com/projects/FreeScale.html" target="_blank"><b>[Project Page]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
            <a href="https://github.com/ali-vilab/FreeScale" target="_blank"><b>[Code]</b></a>
            </p>         
            """
        )

        prompt_in = gr.Textbox(label="Prompt", placeholder="A panda walking and munching bamboo in a bamboo forest.")

        with gr.Row():
            with gr.Accordion('FreeScale Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
                with gr.Row():
                    output_size = gr.Dropdown(["2048 x 2048", "2048 x 4096", "4096 x 2048", "4096 x 4096"], value="2048 x 2048", label="Output Size (H x W)")
                with gr.Row():
                    ddim_steps = gr.Slider(label='DDIM Steps',
                             minimum=5,
                             maximum=200,
                             step=1,
                             value=50)
                    guidance_scale = gr.Slider(label='Guidance Scale',
                             minimum=1.0,
                             maximum=20.0,
                             step=0.1,
                             value=7.5)
                with gr.Row():
                    cosine_scale = gr.Slider(label='Cosine Scale',
                             minimum=0,
                             maximum=10,
                             step=0.1,
                             value=2.0)
                    seed = gr.Slider(label='Random Seed',
                             minimum=0,
                             maximum=10000,
                             step=1,
                             value=123)
                with gr.Row():
                    options = gr.CheckboxGroup(['Disable FreeU', 'Fast Mode'], label='Options (NOT recommended to change)')
                with gr.Row():
                    negative_prompt = gr.Textbox(label='Negative Prompt', value='blurry, ugly, duplicate, poorly drawn, deformed, mosaic')

        submit_btn = gr.Button("Generate", variant='primary')
        image_result = gr.Image(label="Image Output")

        gr.Examples(examples=examples, inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt])

    submit_btn.click(fn=infer,
            inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt],
            outputs=[image_result],
            api_name="freescalehf")

if __name__ == "__main__":
    demo.queue(max_size=8).launch(show_api=True)