FreeScale / app.py
arthur-qiu
init
720b2b0
raw
history blame
7.66 kB
import gradio as gr
import spaces
import os
import torch
from PIL import Image
from pipeline_freescale import StableDiffusionXLPipeline
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
@spaces.GPU
def infer_gpu_part(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu):
pipe = pipe.to("cuda")
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(seed)
if not disable_freeu:
register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
).images[0]
return result
def infer(prompt, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt):
disable_freeu = 'Disable FreeU' in options
fast_mode = True
if output_size == "2048 x 2048":
resolutions_list = [[1024, 1024],
[2048, 2048]]
elif output_size == "1024 x 2048":
resolutions_list = [[512, 1024],
[1024, 2048]]
elif output_size == "2048 x 1024":
resolutions_list = [[1024, 512],
[2048, 1024]]
model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)
print('GPU starts')
result = infer_gpu_part(pipe, seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, disable_freeu)
print('GPU ends')
save_path = 'output.png'
result.save(save_path)
return save_path
examples = [
["A Enchanted illustration of a Palatial Ghost Explosion with a Mystical Sky, in the style of Eric, viewed from CamProX, Bokeh. High resolution, 8k, insanely detailed.",],
["Brunette pilot girl in a snowstorm, full body, moody lighting, intricate details, depth of field, outdoors, Fujifilm XT3, RAW, 8K UHD, film grain, Unreal Engine 5, ray tracing.",],
["A cute and adorable fluffy puppy wearing a witch hat in a Halloween autumn evening forest, falling autumn leaves, brown acorns on the ground, Halloween pumpkins spiderwebs, bats, and a witch’s broom.",],
["A Fantasy Realism illustration of a Heroic Phoenix Rising Adventurous with a Fantasy Waterfall, in the style of Illusia, viewed from Capture360XPro, Historical light. High resolution, 8k, insanely detailed.",],
]
css = """
#col-container {max-width: 640px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 15rem;
height: 36px;
}
div#share-btn-container > div {
flex-direction: row;
background: black;
align-items: center;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: inline-block;
margin: unset;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center;">FreeScale (unleash the resolution of SDXL)</h1>
<p style="text-align: center;">
FreeScale: Unleashing the Resolution of Diffusion Models via Tuning-Free Scale Fusion
</p>
<p style="text-align: center;">
<a href="https://arxiv.org/abs/2412.09626" target="_blank"><b>[arXiv]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
<a href="http://haonanqiu.com/projects/FreeScale.html" target="_blank"><b>[Project Page]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
<a href="https://github.com/ali-vilab/FreeScale" target="_blank"><b>[Code]</b></a>
</p>
"""
)
prompt_in = gr.Textbox(label="Prompt", placeholder="A panda walking and munching bamboo in a bamboo forest.")
with gr.Row():
with gr.Accordion('FreeScale Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
with gr.Row():
output_size = gr.Dropdown(["2048 x 2048", "1024 x 2048", "2048 x 1024"], value="2048 x 2048", label="Output Size (H x W)", info="Due to GPU constraints, run the demo locally for higher resolutions.")
with gr.Row():
ddim_steps = gr.Slider(label='DDIM Steps',
minimum=5,
maximum=200,
step=1,
value=50)
guidance_scale = gr.Slider(label='Guidance Scale',
minimum=1.0,
maximum=20.0,
step=0.1,
value=7.5)
with gr.Row():
cosine_scale = gr.Slider(label='Cosine Scale',
minimum=0,
maximum=10,
step=0.1,
value=2.0)
seed = gr.Slider(label='Random Seed',
minimum=0,
maximum=10000,
step=1,
value=123)
with gr.Row():
options = gr.CheckboxGroup(['Disable FreeU'], label='Options (NOT recommended to change)')
with gr.Row():
negative_prompt = gr.Textbox(label='Negative Prompt', value='blurry, ugly, duplicate, poorly drawn, deformed, mosaic')
submit_btn = gr.Button("Generate", variant='primary')
image_result = gr.Image(label="Image Output")
gr.Examples(examples=examples, inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt])
submit_btn.click(fn=infer,
inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt],
outputs=[image_result],
api_name="freescalehf")
if __name__ == "__main__":
demo.queue(max_size=8).launch()