Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,118 Bytes
2a50f45 610f540 11ba8fa 4dd34ca 2a50f45 9f9e664 2a50f45 4dd34ca 2a50f45 d24f7b8 c5f358a d24f7b8 2a50f45 40ce5b7 2a50f45 144c63e 2a50f45 d24f7b8 2a50f45 debedb8 2a50f45 11ba8fa 2a50f45 11ba8fa 2a50f45 96b30d4 11ba8fa 4dd34ca 610f540 4dd34ca 96b30d4 4dd34ca 96b30d4 4dd34ca 96b30d4 2a50f45 610f540 c5f358a 610f540 2a50f45 610f540 2a50f45 610f540 11ba8fa 610f540 11ba8fa 610f540 11ba8fa 610f540 11ba8fa 2a50f45 610f540 4dd34ca 610f540 2a50f45 610f540 2a50f45 4dd34ca 2a50f45 4dd34ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
import sys
import random
import gradio as gr
import matplotlib.pyplot as plt
import os
import argparse
import random
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
import spaces
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling,
batch_ddim_sampling_freetraj,
load_model_checkpoint,
)
from utils.utils import instantiate_from_config
from utils.utils_freetraj import plan_path
MAX_KEYS = 5
ckpt_dir_512 = "checkpoints/base_512_v2"
ckpt_path_512 = "checkpoints/base_512_v2/model.ckpt"
if not os.path.exists(ckpt_path_512):
os.makedirs(ckpt_dir_512, exist_ok=True)
hf_hub_download(repo_id="VideoCrafter/VideoCrafter2", filename="model.ckpt", local_dir=ckpt_dir_512, force_download=True)
print('Model Loaded.')
def check_move(trajectory, video_length=16):
traj_len = len(trajectory)
if traj_len < 2:
return False
prev_pos = trajectory[0]
for i in range(1, traj_len):
cur_pos = trajectory[i]
if cur_pos[0] > video_length - 1:
return False
if (cur_pos[0] - prev_pos[0]) * ((cur_pos[1] - prev_pos[1]) ** 2 + (cur_pos[2] - prev_pos[2]) ** 2) ** 0.5 < 0.02:
print("Too small movement, please use ori mode.")
return False
prev_pos = cur_pos
return True
@spaces.GPU(duration=280)
def infer(*user_args):
prompt_in = user_args[0]
target_indices = user_args[1]
ddim_edit = user_args[2]
seed = user_args[3]
ddim_steps = user_args[4]
unconditional_guidance_scale = user_args[5]
video_fps = user_args[6]
save_fps = user_args[7]
height_ratio = user_args[8]
width_ratio = user_args[9]
radio_mode = user_args[10]
dropdown_diy = user_args[11]
frame_indices = user_args[-3 * MAX_KEYS: -2 * MAX_KEYS]
h_positions = user_args[-2 * MAX_KEYS: -MAX_KEYS]
w_positions = user_args[-MAX_KEYS:]
print(user_args)
video_length = 16
width = 512
height = 320
if radio_mode == 'ori':
config_512 = "configs/inference_t2v_512_v2.0.yaml"
else:
config_512 = "configs/inference_t2v_freetraj_512_v2.0.yaml"
trajectory = []
for i in range(dropdown_diy):
trajectory.append([int(frame_indices[i]), h_positions[i], w_positions[i]])
trajectory.sort()
print(trajectory)
if not check_move(trajectory):
print("Error trajectory.")
input_traj = []
h_remain = 1 - height_ratio
w_remain = 1 - width_ratio
for i in trajectory:
h_relative = i[1] * h_remain
w_relative = i[2] * w_remain
input_traj.append([i[0], h_relative, h_relative+height_ratio, w_relative, w_relative+width_ratio])
if len(target_indices) < 1:
indices_list = [1, 2]
else:
indices_list = target_indices.split(',')
idx_list = []
for i in indices_list:
idx_list.append(int(i))
config_512 = OmegaConf.load(config_512)
model_config_512 = config_512.pop("model", OmegaConf.create())
model = instantiate_from_config(model_config_512)
model = model.cuda()
model = load_model_checkpoint(model, ckpt_path_512)
model.eval()
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
seed_everything(seed)
args = argparse.Namespace(
mode="base",
savefps=save_fps,
n_samples=1,
ddim_steps=ddim_steps,
ddim_eta=0.0,
bs=1,
height=height,
width=width,
frames=video_length,
fps=video_fps,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_guidance_scale_temporal=None,
cond_input=None,
ddim_edit = ddim_edit,
)
## latent noise shape
h, w = args.height // 8, args.width // 8
frames = model.temporal_length if args.frames < 0 else args.frames
channels = model.channels
batch_size = 1
noise_shape = [batch_size, channels, frames, h, w]
fps = torch.tensor([args.fps] * batch_size).to(model.device).long()
prompts = [prompt_in]
text_emb = model.get_learned_conditioning(prompts)
cond = {"c_crossattn": [text_emb], "fps": fps}
## inference
if radio_mode == 'ori':
batch_samples = batch_ddim_sampling(
model,
cond,
noise_shape,
args.n_samples,
args.ddim_steps,
args.ddim_eta,
args.unconditional_guidance_scale,
args=args,
)
else:
batch_samples = batch_ddim_sampling_freetraj(
model,
cond,
noise_shape,
args.n_samples,
args.ddim_steps,
args.ddim_eta,
args.unconditional_guidance_scale,
idx_list = idx_list,
input_traj = input_traj,
args=args,
)
vid_tensor = batch_samples[0]
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
if radio_mode == 'ori':
video_path = "output.mp4"
video_bbox_path = "output.mp4"
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples))
for framesheet in video
] # [3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
video_path,
grid,
fps=args.savefps,
video_codec="h264",
options={"crf": "10"},
)
else:
video_path = "output_freetraj.mp4"
video_bbox_path = "output_freetraj_bbox.mp4"
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples))
for framesheet in video
] # [3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
video_path,
grid,
fps=args.savefps,
video_codec="h264",
options={"crf": "10"},
)
BOX_SIZE_H = input_traj[0][2] - input_traj[0][1]
BOX_SIZE_W = input_traj[0][4] - input_traj[0][3]
PATHS = plan_path(input_traj)
h_len = grid.shape[1]
w_len = grid.shape[2]
sub_h = int(BOX_SIZE_H * h_len)
sub_w = int(BOX_SIZE_W * w_len)
for j in range(grid.shape[0]):
h_start = int(PATHS[j][0] * h_len)
h_end = h_start + sub_h
w_start = int(PATHS[j][2] * w_len)
w_end = w_start + sub_w
h_start = max(1, h_start)
h_end = min(h_len-1, h_end)
w_start = max(1, w_start)
w_end = min(w_len-1, w_end)
grid[j, h_start-1:h_end+1, w_start-1:w_start+2, :] = torch.ones_like(grid[j, h_start-1:h_end+1, w_start-1:w_start+2, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3)
grid[j, h_start-1:h_end+1, w_end-2:w_end+1, :] = torch.ones_like(grid[j, h_start-1:h_end+1, w_end-2:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3)
grid[j, h_start-1:h_start+2, w_start-1:w_end+1, :] = torch.ones_like(grid[j, h_start-1:h_start+2, w_start-1:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3)
grid[j, h_end-2:h_end+1, w_start-1:w_end+1, :] = torch.ones_like(grid[j, h_end-2:h_end+1, w_start-1:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3)
torchvision.io.write_video(
video_bbox_path,
grid,
fps=args.savefps,
video_codec="h264",
options={"crf": "10"},
)
return video_path, video_bbox_path
examples = [
["A squirrel jumping from one tree to another.",],
["A bear climbing down a tree after spotting a threat.",],
["A corgi running on the grassland on the grassland.",],
["A deer walking in a snowy field.",],
["A horse galloping on a street.",],
["A majestic eagle soaring high above the treetops, surveying its territory.",],
]
css = """
#col-container {max-width: 1024px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 15rem;
height: 36px;
}
div#share-btn-container > div {
flex-direction: row;
background: black;
align-items: center;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: inline-block;
margin: unset;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
def mode_update(mode):
if mode == 'demo':
trajectories_mode = [gr.Row(visible=True), gr.Row(visible=False)]
elif mode == 'diy':
trajectories_mode = [gr.Row(visible=False), gr.Row(visible=True)]
else:
trajectories_mode = [gr.Row(visible=False), gr.Row(visible=False)]
return trajectories_mode
def keyframe_update(num):
keyframes = []
if type(num) != int:
num = 0
for i in range(num):
keyframes.append(gr.Row(visible=True))
for i in range(MAX_KEYS - num):
keyframes.append(gr.Row(visible=False))
return keyframes
def demo_update(mode):
if mode == 'topleft->bottomright':
num = 2
elif mode == 'bottomleft->topright':
num = 2
elif mode == 'topleft->bottomleft->bottomright':
num = 3
elif mode == 'bottomright->topright->topleft':
num = 3
elif mode == '"V"':
num = 4
elif mode == '"^"':
num = 4
elif mode == 'left->right->left->right':
num = 4
elif mode == 'triangle':
num = 4
else:
num = 0
return num
def demo_update_frame(mode):
frame_indices = []
if mode == 'topleft->bottomright':
num = 2
frame_indices.append(gr.Text(value=0))
frame_indices.append(gr.Text(value=15))
elif mode == 'bottomleft->topright':
num = 2
frame_indices.append(gr.Text(value=0))
frame_indices.append(gr.Text(value=15))
elif mode == 'topleft->bottomleft->bottomright':
num = 3
frame_indices.append(gr.Text(value=0))
frame_indices.append(gr.Text(value=9))
frame_indices.append(gr.Text(value=15))
elif mode == 'bottomright->topright->topleft':
num = 3
frame_indices.append(gr.Text(value=0))
frame_indices.append(gr.Text(value=6))
frame_indices.append(gr.Text(value=15))
elif mode == '"V"':
num = 4
frame_indices.append(gr.Text(value=0))
frame_indices.append(gr.Text(value=7))
frame_indices.append(gr.Text(value=8))
frame_indices.append(gr.Text(value=15))
elif mode == '"^"':
num = 4
frame_indices.append(gr.Text(value=0))
frame_indices.append(gr.Text(value=7))
frame_indices.append(gr.Text(value=8))
frame_indices.append(gr.Text(value=15))
elif mode == 'left->right->left->right':
num = 4
frame_indices.append(gr.Text(value=0))
frame_indices.append(gr.Text(value=5))
frame_indices.append(gr.Text(value=10))
frame_indices.append(gr.Text(value=15))
elif mode == 'triangle':
num = 4
frame_indices.append(gr.Text(value=0))
frame_indices.append(gr.Text(value=5))
frame_indices.append(gr.Text(value=10))
frame_indices.append(gr.Text(value=15))
else:
num = 0
for i in range(MAX_KEYS - num):
frame_indices.append(gr.Text())
return frame_indices
def demo_update_h(mode):
h_positions = []
if mode == 'topleft->bottomright':
num = 2
h_positions.append(gr.Slider(value=0.1))
h_positions.append(gr.Slider(value=0.9))
elif mode == 'bottomleft->topright':
num = 2
h_positions.append(gr.Slider(value=0.9))
h_positions.append(gr.Slider(value=0.1))
elif mode == 'topleft->bottomleft->bottomright':
num = 3
h_positions.append(gr.Slider(value=0.1))
h_positions.append(gr.Slider(value=0.9))
h_positions.append(gr.Slider(value=0.9))
elif mode == 'bottomright->topright->topleft':
num = 3
h_positions.append(gr.Slider(value=0.9))
h_positions.append(gr.Slider(value=0.1))
h_positions.append(gr.Slider(value=0.1))
elif mode == '"V"':
num = 4
h_positions.append(gr.Slider(value=0.1))
h_positions.append(gr.Slider(value=0.9))
h_positions.append(gr.Slider(value=0.9))
h_positions.append(gr.Slider(value=0.1))
elif mode == '"^"':
num = 4
h_positions.append(gr.Slider(value=0.9))
h_positions.append(gr.Slider(value=0.1))
h_positions.append(gr.Slider(value=0.1))
h_positions.append(gr.Slider(value=0.9))
elif mode == 'left->right->left->right':
num = 4
h_positions.append(gr.Slider(value=0.5))
h_positions.append(gr.Slider(value=0.5))
h_positions.append(gr.Slider(value=0.5))
h_positions.append(gr.Slider(value=0.5))
elif mode == 'triangle':
num = 4
h_positions.append(gr.Slider(value=0.1))
h_positions.append(gr.Slider(value=0.9))
h_positions.append(gr.Slider(value=0.9))
h_positions.append(gr.Slider(value=0.1))
else:
num = 0
for i in range(MAX_KEYS - num):
h_positions.append(gr.Slider())
return h_positions
def demo_update_w(mode):
w_positions = []
if mode == 'topleft->bottomright':
num = 2
w_positions.append(gr.Slider(value=0.1))
w_positions.append(gr.Slider(value=0.9))
elif mode == 'bottomleft->topright':
num = 2
w_positions.append(gr.Slider(value=0.1))
w_positions.append(gr.Slider(value=0.9))
elif mode == 'topleft->bottomleft->bottomright':
num = 3
w_positions.append(gr.Slider(value=0.1))
w_positions.append(gr.Slider(value=0.1))
w_positions.append(gr.Slider(value=0.9))
elif mode == 'bottomright->topright->topleft':
num = 3
w_positions.append(gr.Slider(value=0.9))
w_positions.append(gr.Slider(value=0.9))
w_positions.append(gr.Slider(value=0.1))
elif mode == '"V"':
num = 4
w_positions.append(gr.Slider(value=0.1))
w_positions.append(gr.Slider(value=0.8/15*7 + 0.1))
w_positions.append(gr.Slider(value=0.8/15*8 + 0.1))
w_positions.append(gr.Slider(value=0.9))
elif mode == '"^"':
num = 4
w_positions.append(gr.Slider(value=0.9))
w_positions.append(gr.Slider(value=0.8/15*8 + 0.1))
w_positions.append(gr.Slider(value=0.8/15*7 + 0.1))
w_positions.append(gr.Slider(value=0.1))
elif mode == 'left->right->left->right':
num = 4
w_positions.append(gr.Slider(value=0.1))
w_positions.append(gr.Slider(value=0.9))
w_positions.append(gr.Slider(value=0.1))
w_positions.append(gr.Slider(value=0.9))
elif mode == 'triangle':
num = 4
w_positions.append(gr.Slider(value=0.5))
w_positions.append(gr.Slider(value=0.9))
w_positions.append(gr.Slider(value=0.1))
w_positions.append(gr.Slider(value=0.5))
else:
num = 0
for i in range(MAX_KEYS - num):
w_positions.append(gr.Slider())
return w_positions
def plot_update(*positions):
key_length = positions[-1]
frame_indices = positions[:key_length]
if type(key_length) != int or len(frame_indices) < 2:
traj_plot = gr.Plot(
label="Trajectory"
)
return traj_plot
frame_indices = [int(i) for i in frame_indices]
h_positions = positions[MAX_KEYS:MAX_KEYS+key_length]
w_positions = positions[2*MAX_KEYS:2*MAX_KEYS+key_length]
frame_indices, h_positions, w_positions = zip(*sorted(zip(frame_indices, h_positions, w_positions)))
plt.cla()
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.gca().invert_yaxis()
plt.gca().xaxis.tick_top()
plt.plot(w_positions, h_positions, linestyle='-', marker = 'o', markerfacecolor='r')
traj_plot = gr.Plot(
label="Trajectory",
value = plt
)
return traj_plot
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center;">FreeTraj</h1>
<p style="text-align: center;">
Tuning-Free Trajectory Control in Video Diffusion Models
</p>
<p style="text-align: center;">
<a href="https://arxiv.org/abs/2406.16863" target="_blank"><b>[arXiv]</b></a>
<a href="http://haonanqiu.com/projects/FreeTraj.html" target="_blank"><b>[Project Page]</b></a>
<a href="https://github.com/arthur-qiu/FreeTraj" target="_blank"><b>[Code]</b></a>
</p>
"""
)
keyframes = []
frame_indices = []
h_positions = []
w_positions = []
with gr.Row():
video_result = gr.Video(label="Video Output")
video_result_bbox = gr.Video(label="Video Output with BBox")
with gr.Group():
with gr.Row():
prompt_in = gr.Textbox(label="Prompt", placeholder="A corgi running on the grassland on the grassland.", scale = 5)
target_indices = gr.Textbox(label="Target Indices (1 for the first word, necessary!)", placeholder="1,2", scale = 2)
with gr.Row():
radio_mode = gr.Radio(label='Trajectory Mode', choices = ['demo', 'diy', 'ori'], scale = 1)
height_ratio = gr.Slider(label='Height Ratio of BBox',
minimum=0.2,
maximum=0.4,
step=0.01,
value=0.3,
scale = 1)
width_ratio = gr.Slider(label='Width Ratio of BBox',
minimum=0.2,
maximum=0.4,
step=0.01,
value=0.3,
scale = 1)
with gr.Row(visible=False) as row_demo:
dropdown_demo = gr.Dropdown(
label="Demo Trajectory",
choices= ['topleft->bottomright', 'bottomleft->topright', 'topleft->bottomleft->bottomright', 'bottomright->topright->topleft', '"V"', '"^"', 'left->right->left->right', 'triangle']
)
with gr.Row(visible=False) as row_diy:
dropdown_diy = gr.Dropdown(
label="Number of keyframes",
choices=range(2, MAX_KEYS+1),
)
for i in range(MAX_KEYS):
with gr.Row(visible=False) as row:
text = gr.Textbox(
value=f"Keyframe #{i}",
interactive=False,
container = False,
lines = 3,
scale=1
)
frame_ids = gr.Textbox(
None,
label=f"Frame Indices #{i}",
interactive=True,
scale=2
)
h_position = gr.Slider(label='Position in Height',
minimum=0.0,
maximum=1.0,
step=0.01,
scale=2)
w_position = gr.Slider(label='Position in Width',
minimum=0.0,
maximum=1.0,
step=0.01,
scale=2)
frame_indices.append(frame_ids)
h_positions.append(h_position)
w_positions.append(w_position)
keyframes.append(row)
dropdown_demo.change(demo_update, dropdown_demo, dropdown_diy)
dropdown_diy.change(keyframe_update, dropdown_diy, keyframes)
dropdown_demo.change(demo_update_frame, dropdown_demo, frame_indices)
dropdown_demo.change(demo_update_h, dropdown_demo, h_positions)
dropdown_demo.change(demo_update_w, dropdown_demo, w_positions)
radio_mode.change(mode_update, radio_mode, [row_demo, row_diy])
traj_plot = gr.Plot(
label="Trajectory"
)
h_positions[0].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
h_positions[1].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
h_positions[2].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
h_positions[3].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
h_positions[4].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
w_positions[0].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
w_positions[1].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
w_positions[2].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
w_positions[3].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
w_positions[4].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot)
with gr.Row():
with gr.Accordion('Useful FreeTraj Parameters (feel free to adjust these parameters based on your prompt): ', open=True):
with gr.Row():
ddim_edit = gr.Slider(label='Editing Steps (larger for better control while losing some quality)',
minimum=0,
maximum=12,
step=1,
value=6)
seed = gr.Slider(label='Random Seed',
minimum=0,
maximum=10000,
step=1,
value=123)
with gr.Row():
with gr.Accordion('Useless FreeTraj Parameters (mostly no need to adjust): ', open=False):
with gr.Row():
ddim_steps = gr.Slider(label='DDIM Steps',
minimum=5,
maximum=200,
step=1,
value=50)
unconditional_guidance_scale = gr.Slider(label='Unconditional Guidance Scale',
minimum=1.0,
maximum=20.0,
step=0.1,
value=12.0)
with gr.Row():
video_fps = gr.Slider(label='Video FPS (larger for quicker motion)',
minimum=8,
maximum=36,
step=4,
value=16)
save_fps = gr.Slider(label='Save FPS',
minimum=1,
maximum=30,
step=1,
value=10)
with gr.Row():
submit_btn = gr.Button("Generate", variant='primary')
with gr.Row():
gr.Examples(label='Sample Prompts', examples=examples, inputs=[prompt_in, target_indices, ddim_edit, seed, ddim_steps, unconditional_guidance_scale, video_fps, save_fps, height_ratio, width_ratio, radio_mode, dropdown_diy, *frame_indices, *h_positions, *w_positions])
demo_list = ['0026_0_0.4_0.4.gif', '0047_1_0.4_0.3.gif', '0051_1_0.4_0.4.gif']
demo_pick = random.randint(0, len(demo_list) - 1)
with gr.Row():
for i in range(len(demo_list)):
gr.Image(show_label = False, show_download_button = False, value='assets/' + demo_list[i])
with gr.Row():
gr.Markdown(
"""
<h2 style="text-align: center;">Hints</h2>
<p style="text-align: center;">
1. Choose trajectory mode <b>"ori"</b> to see whether the prompt works on the pre-trained model.
</p>
<p style="text-align: center;">
2. Adjust the prompt or random seed to get a qualified video.
</p>
<p style="text-align: center;">
3. Choose trajectory mode <b>"demo"</b> to see whether <b>FreeTraj</b> works or not.
</p>
<p style="text-align: center;">
4. Choose trajectory mode <b>"diy"</b> to plan new trajectory. It may fail in some extreme cases.
</p>
"""
)
submit_btn.click(fn=infer,
inputs=[prompt_in, target_indices, ddim_edit, seed, ddim_steps, unconditional_guidance_scale, video_fps, save_fps, height_ratio, width_ratio, radio_mode, dropdown_diy, *frame_indices, *h_positions, *w_positions],
outputs=[video_result, video_result_bbox],
api_name="freetraj")
demo.queue(max_size=8).launch(show_api=True) |