Spaces:
Sleeping
Sleeping
File size: 1,481 Bytes
2a50f45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import datetime
import argparse, importlib
from pytorch_lightning import seed_everything
import torch
import torch.distributed as dist
def setup_dist(local_rank):
if dist.is_initialized():
return
torch.cuda.set_device(local_rank)
torch.distributed.init_process_group('nccl', init_method='env://')
def get_dist_info():
if dist.is_available():
initialized = dist.is_initialized()
else:
initialized = False
if initialized:
rank = dist.get_rank()
world_size = dist.get_world_size()
else:
rank = 0
world_size = 1
return rank, world_size
if __name__ == '__main__':
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
parser = argparse.ArgumentParser()
parser.add_argument("--module", type=str, help="module name", default="inference")
parser.add_argument("--local_rank", type=int, nargs="?", help="for ddp", default=0)
args, unknown = parser.parse_known_args()
inference_api = importlib.import_module(args.module, package=None)
inference_parser = inference_api.get_parser()
inference_args, unknown = inference_parser.parse_known_args()
seed_everything(inference_args.seed)
setup_dist(args.local_rank)
torch.backends.cudnn.benchmark = True
rank, gpu_num = get_dist_info()
print("@CoLVDM Inference [rank%d]: %s"%(rank, now))
inference_api.run_inference(inference_args, gpu_num, rank) |