Spaces:
Sleeping
Sleeping
import sys | |
import random | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import os | |
import argparse | |
import random | |
from omegaconf import OmegaConf | |
import torch | |
import torchvision | |
from pytorch_lightning import seed_everything | |
from huggingface_hub import hf_hub_download | |
import spaces | |
sys.path.insert(0, "scripts/evaluation") | |
from funcs import ( | |
batch_ddim_sampling, | |
batch_ddim_sampling_freetraj, | |
load_model_checkpoint, | |
) | |
from utils.utils import instantiate_from_config | |
from utils.utils_freetraj import plan_path | |
video_length = 16 | |
width = 512 | |
height = 320 | |
MAX_KEYS = 5 | |
ckpt_dir_512 = "checkpoints/base_512_v2" | |
ckpt_path_512 = "checkpoints/base_512_v2/model.ckpt" | |
if not os.path.exists(ckpt_path_512): | |
os.makedirs(ckpt_dir_512, exist_ok=True) | |
hf_hub_download(repo_id="VideoCrafter/VideoCrafter2", filename="model.ckpt", local_dir=ckpt_dir_512, force_download=True) | |
print('Model Loaded.') | |
def check_move(trajectory, video_length=16): | |
traj_len = len(trajectory) | |
if traj_len < 2: | |
return False | |
prev_pos = trajectory[0] | |
for i in range(1, traj_len): | |
cur_pos = trajectory[i] | |
if cur_pos[0] > video_length - 1: | |
return False | |
if (cur_pos[0] - prev_pos[0]) * ((cur_pos[1] - prev_pos[1]) ** 2 + (cur_pos[2] - prev_pos[2]) ** 2) ** 0.5 < 0.02: | |
print("Too small movement, please use ori mode.") | |
return False | |
prev_pos = cur_pos | |
return True | |
def check(radio_mode): | |
if radio_mode == 'ori': | |
video_path = "output.mp4" | |
video_bbox_path = "output.mp4" | |
else: | |
video_path = "output_freetraj.mp4" | |
video_bbox_path = "output_freetraj_bbox.mp4" | |
return video_path, video_bbox_path | |
def infer(*user_args): | |
prompt_in = user_args[0] | |
target_indices = user_args[1] | |
ddim_edit = user_args[2] | |
seed = user_args[3] | |
ddim_steps = user_args[4] | |
unconditional_guidance_scale = user_args[5] | |
video_fps = user_args[6] | |
save_fps = user_args[7] | |
height_ratio = user_args[8] | |
width_ratio = user_args[9] | |
radio_mode = user_args[10] | |
dropdown_diy = user_args[11] | |
frame_indices = user_args[-3 * MAX_KEYS: -2 * MAX_KEYS] | |
h_positions = user_args[-2 * MAX_KEYS: -MAX_KEYS] | |
w_positions = user_args[-MAX_KEYS:] | |
print(user_args) | |
if radio_mode == 'ori': | |
config_512 = "configs/inference_t2v_512_v2.0.yaml" | |
else: | |
config_512 = "configs/inference_t2v_freetraj_512_v2.0.yaml" | |
trajectory = [] | |
for i in range(dropdown_diy): | |
trajectory.append([int(frame_indices[i]), h_positions[i], w_positions[i]]) | |
trajectory.sort() | |
print(trajectory) | |
if not check_move(trajectory): | |
print("Error trajectory.") | |
input_traj = [] | |
h_remain = 1 - height_ratio | |
w_remain = 1 - width_ratio | |
for i in trajectory: | |
h_relative = i[1] * h_remain | |
w_relative = i[2] * w_remain | |
input_traj.append([i[0], h_relative, h_relative+height_ratio, w_relative, w_relative+width_ratio]) | |
if len(target_indices) < 1: | |
indices_list = [1, 2] | |
else: | |
indices_list = target_indices.split(',') | |
idx_list = [] | |
for i in indices_list: | |
idx_list.append(int(i)) | |
config_512 = OmegaConf.load(config_512) | |
model_config_512 = config_512.pop("model", OmegaConf.create()) | |
args = argparse.Namespace( | |
mode="base", | |
savefps=save_fps, | |
n_samples=1, | |
ddim_steps=ddim_steps, | |
ddim_eta=0.0, | |
bs=1, | |
fps=video_fps, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_guidance_scale_temporal=None, | |
cond_input=None, | |
prompt_in = prompt_in, | |
seed = seed, | |
ddim_edit = ddim_edit, | |
model_config_512 = model_config_512, | |
idx_list = idx_list, | |
input_traj = input_traj, | |
) | |
print('GPU starts') | |
video = infer_gpu_part(args) | |
print('GPU ends') | |
video = torch.clamp(video.float(), -1.0, 1.0) | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
if radio_mode == 'ori': | |
video_path = "output.mp4" | |
video_bbox_path = "output.mp4" | |
frame_grids = [ | |
torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples)) | |
for framesheet in video | |
] # [3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
torchvision.io.write_video( | |
video_path, | |
grid, | |
fps=args.savefps, | |
video_codec="h264", | |
options={"crf": "10"}, | |
) | |
else: | |
video_path = "output_freetraj.mp4" | |
video_bbox_path = "output_freetraj_bbox.mp4" | |
frame_grids = [ | |
torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples)) | |
for framesheet in video | |
] # [3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
torchvision.io.write_video( | |
video_path, | |
grid, | |
fps=args.savefps, | |
video_codec="h264", | |
options={"crf": "10"}, | |
) | |
BOX_SIZE_H = input_traj[0][2] - input_traj[0][1] | |
BOX_SIZE_W = input_traj[0][4] - input_traj[0][3] | |
PATHS = plan_path(input_traj) | |
h_len = grid.shape[1] | |
w_len = grid.shape[2] | |
sub_h = int(BOX_SIZE_H * h_len) | |
sub_w = int(BOX_SIZE_W * w_len) | |
for j in range(grid.shape[0]): | |
h_start = int(PATHS[j][0] * h_len) | |
h_end = h_start + sub_h | |
w_start = int(PATHS[j][2] * w_len) | |
w_end = w_start + sub_w | |
h_start = max(1, h_start) | |
h_end = min(h_len-1, h_end) | |
w_start = max(1, w_start) | |
w_end = min(w_len-1, w_end) | |
grid[j, h_start-1:h_end+1, w_start-1:w_start+2, :] = torch.ones_like(grid[j, h_start-1:h_end+1, w_start-1:w_start+2, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) | |
grid[j, h_start-1:h_end+1, w_end-2:w_end+1, :] = torch.ones_like(grid[j, h_start-1:h_end+1, w_end-2:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) | |
grid[j, h_start-1:h_start+2, w_start-1:w_end+1, :] = torch.ones_like(grid[j, h_start-1:h_start+2, w_start-1:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) | |
grid[j, h_end-2:h_end+1, w_start-1:w_end+1, :] = torch.ones_like(grid[j, h_end-2:h_end+1, w_start-1:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) | |
torchvision.io.write_video( | |
video_bbox_path, | |
grid, | |
fps=args.savefps, | |
video_codec="h264", | |
options={"crf": "10"}, | |
) | |
return video_path, video_bbox_path | |
def infer_gpu_part(args): | |
model = instantiate_from_config(args.model_config_512) | |
model = model.cuda() | |
model = load_model_checkpoint(model, ckpt_path_512) | |
model.eval() | |
if args.seed is None: | |
seed = int.from_bytes(os.urandom(2), "big") | |
else: | |
seed = args.seed | |
print(f"Using seed: {seed}") | |
seed_everything(seed) | |
## latent noise shape | |
h, w = height // 8, width // 8 | |
frames = video_length | |
channels = model.channels | |
batch_size = 1 | |
noise_shape = [batch_size, channels, frames, h, w] | |
fps = torch.tensor([args.fps] * batch_size).to(model.device).long() | |
prompts = [args.prompt_in] | |
text_emb = model.get_learned_conditioning(prompts) | |
cond = {"c_crossattn": [text_emb], "fps": fps} | |
## inference | |
if radio_mode == 'ori': | |
batch_samples = batch_ddim_sampling( | |
model, | |
cond, | |
noise_shape, | |
args.n_samples, | |
args.ddim_steps, | |
args.ddim_eta, | |
args.unconditional_guidance_scale, | |
args=args, | |
) | |
else: | |
batch_samples = batch_ddim_sampling_freetraj( | |
model, | |
cond, | |
noise_shape, | |
args.n_samples, | |
args.ddim_steps, | |
args.ddim_eta, | |
args.unconditional_guidance_scale, | |
idx_list = args.idx_list, | |
input_traj = args.input_traj, | |
args=args, | |
) | |
vid_tensor = batch_samples[0] | |
video = vid_tensor.detach().cpu() | |
return video | |
examples = [ | |
["A squirrel jumping from one tree to another.",], | |
["A bear climbing down a tree after spotting a threat.",], | |
["A corgi running on the grassland on the grassland.",], | |
["A barrel floating in a river.",], | |
["A horse galloping on a street.",], | |
["A majestic eagle soaring high above the treetops, surveying its territory.",], | |
] | |
css = """ | |
#col-container {max-width: 1024px; margin-left: auto; margin-right: auto;} | |
a {text-decoration-line: underline; font-weight: 600;} | |
.animate-spin { | |
animation: spin 1s linear infinite; | |
} | |
#share-btn-container { | |
display: flex; | |
padding-left: 0.5rem !important; | |
padding-right: 0.5rem !important; | |
background-color: #000000; | |
justify-content: center; | |
align-items: center; | |
border-radius: 9999px !important; | |
max-width: 15rem; | |
height: 36px; | |
} | |
div#share-btn-container > div { | |
flex-direction: row; | |
background: black; | |
align-items: center; | |
} | |
#share-btn-container:hover { | |
background-color: #060606; | |
} | |
#share-btn { | |
all: initial; | |
color: #ffffff; | |
font-weight: 600; | |
cursor:pointer; | |
font-family: 'IBM Plex Sans', sans-serif; | |
margin-left: 0.5rem !important; | |
padding-top: 0.5rem !important; | |
padding-bottom: 0.5rem !important; | |
right:0; | |
} | |
#share-btn * { | |
all: unset; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
#share-btn-container.hidden { | |
display: none!important; | |
} | |
img[src*='#center'] { | |
display: inline-block; | |
margin: unset; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 10px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
""" | |
def mode_update(mode): | |
if mode == 'demo': | |
trajectories_mode = [gr.Row(visible=True), gr.Row(visible=False)] | |
elif mode == 'diy': | |
trajectories_mode = [gr.Row(visible=False), gr.Row(visible=True)] | |
else: | |
trajectories_mode = [gr.Row(visible=False), gr.Row(visible=False)] | |
return trajectories_mode | |
def keyframe_update(num): | |
keyframes = [] | |
if type(num) != int: | |
num = 0 | |
for i in range(num): | |
keyframes.append(gr.Row(visible=True)) | |
for i in range(MAX_KEYS - num): | |
keyframes.append(gr.Row(visible=False)) | |
return keyframes | |
def demo_update(mode): | |
if mode == 'topleft->bottomright': | |
num = 2 | |
elif mode == 'bottomleft->topright': | |
num = 2 | |
elif mode == 'topleft->bottomleft->bottomright': | |
num = 3 | |
elif mode == 'bottomright->topright->topleft': | |
num = 3 | |
elif mode == '"V"': | |
num = 4 | |
elif mode == '"^"': | |
num = 4 | |
elif mode == 'left->right->left->right': | |
num = 4 | |
elif mode == 'triangle': | |
num = 4 | |
else: | |
num = 0 | |
return num | |
def demo_update_frame(mode): | |
frame_indices = [] | |
if mode == 'topleft->bottomright': | |
num = 2 | |
frame_indices.append(gr.Text(value=0)) | |
frame_indices.append(gr.Text(value=15)) | |
elif mode == 'bottomleft->topright': | |
num = 2 | |
frame_indices.append(gr.Text(value=0)) | |
frame_indices.append(gr.Text(value=15)) | |
elif mode == 'topleft->bottomleft->bottomright': | |
num = 3 | |
frame_indices.append(gr.Text(value=0)) | |
frame_indices.append(gr.Text(value=9)) | |
frame_indices.append(gr.Text(value=15)) | |
elif mode == 'bottomright->topright->topleft': | |
num = 3 | |
frame_indices.append(gr.Text(value=0)) | |
frame_indices.append(gr.Text(value=6)) | |
frame_indices.append(gr.Text(value=15)) | |
elif mode == '"V"': | |
num = 4 | |
frame_indices.append(gr.Text(value=0)) | |
frame_indices.append(gr.Text(value=7)) | |
frame_indices.append(gr.Text(value=8)) | |
frame_indices.append(gr.Text(value=15)) | |
elif mode == '"^"': | |
num = 4 | |
frame_indices.append(gr.Text(value=0)) | |
frame_indices.append(gr.Text(value=7)) | |
frame_indices.append(gr.Text(value=8)) | |
frame_indices.append(gr.Text(value=15)) | |
elif mode == 'left->right->left->right': | |
num = 4 | |
frame_indices.append(gr.Text(value=0)) | |
frame_indices.append(gr.Text(value=5)) | |
frame_indices.append(gr.Text(value=10)) | |
frame_indices.append(gr.Text(value=15)) | |
elif mode == 'triangle': | |
num = 4 | |
frame_indices.append(gr.Text(value=0)) | |
frame_indices.append(gr.Text(value=5)) | |
frame_indices.append(gr.Text(value=10)) | |
frame_indices.append(gr.Text(value=15)) | |
else: | |
num = 0 | |
for i in range(MAX_KEYS - num): | |
frame_indices.append(gr.Text()) | |
return frame_indices | |
def demo_update_h(mode): | |
h_positions = [] | |
if mode == 'topleft->bottomright': | |
num = 2 | |
h_positions.append(gr.Slider(value=0.1)) | |
h_positions.append(gr.Slider(value=0.9)) | |
elif mode == 'bottomleft->topright': | |
num = 2 | |
h_positions.append(gr.Slider(value=0.9)) | |
h_positions.append(gr.Slider(value=0.1)) | |
elif mode == 'topleft->bottomleft->bottomright': | |
num = 3 | |
h_positions.append(gr.Slider(value=0.1)) | |
h_positions.append(gr.Slider(value=0.9)) | |
h_positions.append(gr.Slider(value=0.9)) | |
elif mode == 'bottomright->topright->topleft': | |
num = 3 | |
h_positions.append(gr.Slider(value=0.9)) | |
h_positions.append(gr.Slider(value=0.1)) | |
h_positions.append(gr.Slider(value=0.1)) | |
elif mode == '"V"': | |
num = 4 | |
h_positions.append(gr.Slider(value=0.1)) | |
h_positions.append(gr.Slider(value=0.9)) | |
h_positions.append(gr.Slider(value=0.9)) | |
h_positions.append(gr.Slider(value=0.1)) | |
elif mode == '"^"': | |
num = 4 | |
h_positions.append(gr.Slider(value=0.9)) | |
h_positions.append(gr.Slider(value=0.1)) | |
h_positions.append(gr.Slider(value=0.1)) | |
h_positions.append(gr.Slider(value=0.9)) | |
elif mode == 'left->right->left->right': | |
num = 4 | |
h_positions.append(gr.Slider(value=0.5)) | |
h_positions.append(gr.Slider(value=0.5)) | |
h_positions.append(gr.Slider(value=0.5)) | |
h_positions.append(gr.Slider(value=0.5)) | |
elif mode == 'triangle': | |
num = 4 | |
h_positions.append(gr.Slider(value=0.1)) | |
h_positions.append(gr.Slider(value=0.9)) | |
h_positions.append(gr.Slider(value=0.9)) | |
h_positions.append(gr.Slider(value=0.1)) | |
else: | |
num = 0 | |
for i in range(MAX_KEYS - num): | |
h_positions.append(gr.Slider()) | |
return h_positions | |
def demo_update_w(mode): | |
w_positions = [] | |
if mode == 'topleft->bottomright': | |
num = 2 | |
w_positions.append(gr.Slider(value=0.1)) | |
w_positions.append(gr.Slider(value=0.9)) | |
elif mode == 'bottomleft->topright': | |
num = 2 | |
w_positions.append(gr.Slider(value=0.1)) | |
w_positions.append(gr.Slider(value=0.9)) | |
elif mode == 'topleft->bottomleft->bottomright': | |
num = 3 | |
w_positions.append(gr.Slider(value=0.1)) | |
w_positions.append(gr.Slider(value=0.1)) | |
w_positions.append(gr.Slider(value=0.9)) | |
elif mode == 'bottomright->topright->topleft': | |
num = 3 | |
w_positions.append(gr.Slider(value=0.9)) | |
w_positions.append(gr.Slider(value=0.9)) | |
w_positions.append(gr.Slider(value=0.1)) | |
elif mode == '"V"': | |
num = 4 | |
w_positions.append(gr.Slider(value=0.1)) | |
w_positions.append(gr.Slider(value=0.8/15*7 + 0.1)) | |
w_positions.append(gr.Slider(value=0.8/15*8 + 0.1)) | |
w_positions.append(gr.Slider(value=0.9)) | |
elif mode == '"^"': | |
num = 4 | |
w_positions.append(gr.Slider(value=0.9)) | |
w_positions.append(gr.Slider(value=0.8/15*8 + 0.1)) | |
w_positions.append(gr.Slider(value=0.8/15*7 + 0.1)) | |
w_positions.append(gr.Slider(value=0.1)) | |
elif mode == 'left->right->left->right': | |
num = 4 | |
w_positions.append(gr.Slider(value=0.1)) | |
w_positions.append(gr.Slider(value=0.9)) | |
w_positions.append(gr.Slider(value=0.1)) | |
w_positions.append(gr.Slider(value=0.9)) | |
elif mode == 'triangle': | |
num = 4 | |
w_positions.append(gr.Slider(value=0.5)) | |
w_positions.append(gr.Slider(value=0.9)) | |
w_positions.append(gr.Slider(value=0.1)) | |
w_positions.append(gr.Slider(value=0.5)) | |
else: | |
num = 0 | |
for i in range(MAX_KEYS - num): | |
w_positions.append(gr.Slider()) | |
return w_positions | |
def plot_update(*positions): | |
key_length = positions[-1] | |
frame_indices = positions[:key_length] | |
if type(key_length) != int or len(frame_indices) < 2: | |
traj_plot = gr.Plot( | |
label="Trajectory" | |
) | |
return traj_plot | |
frame_indices = [int(i) for i in frame_indices] | |
h_positions = positions[MAX_KEYS:MAX_KEYS+key_length] | |
w_positions = positions[2*MAX_KEYS:2*MAX_KEYS+key_length] | |
frame_indices, h_positions, w_positions = zip(*sorted(zip(frame_indices, h_positions, w_positions))) | |
plt.cla() | |
plt.xlim(0, 1) | |
plt.ylim(0, 1) | |
plt.gca().invert_yaxis() | |
plt.gca().xaxis.tick_top() | |
plt.plot(w_positions, h_positions, linestyle='-', marker = 'o', markerfacecolor='r') | |
traj_plot = gr.Plot( | |
label="Trajectory", | |
value = plt | |
) | |
return traj_plot | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
""" | |
<h1 style="text-align: center;">FreeTraj</h1> | |
<p style="text-align: center;"> | |
Tuning-Free Trajectory Control in Video Diffusion Models | |
</p> | |
<p style="text-align: center;"> | |
<a href="https://arxiv.org/abs/2406.16863" target="_blank"><b>[arXiv]</b></a> | |
<a href="http://haonanqiu.com/projects/FreeTraj.html" target="_blank"><b>[Project Page]</b></a> | |
<a href="https://github.com/arthur-qiu/FreeTraj" target="_blank"><b>[Code]</b></a> | |
</p> | |
""" | |
) | |
keyframes = [] | |
frame_indices = [] | |
h_positions = [] | |
w_positions = [] | |
with gr.Row(): | |
video_result = gr.Video(label="Video Output") | |
video_result_bbox = gr.Video(label="Video Output with BBox") | |
with gr.Group(): | |
with gr.Row(): | |
prompt_in = gr.Textbox(label="Prompt", placeholder="A corgi running on the grassland on the grassland.", scale = 5) | |
target_indices = gr.Textbox(label="Target Indices (1 for the first word, necessary!)", placeholder="1,2", scale = 2) | |
with gr.Row(): | |
radio_mode = gr.Radio(label='Trajectory Mode', choices = ['demo', 'diy', 'ori'], scale = 1) | |
height_ratio = gr.Slider(label='Height Ratio of BBox', | |
minimum=0.2, | |
maximum=0.4, | |
step=0.01, | |
value=0.3, | |
scale = 1) | |
width_ratio = gr.Slider(label='Width Ratio of BBox', | |
minimum=0.2, | |
maximum=0.4, | |
step=0.01, | |
value=0.3, | |
scale = 1) | |
with gr.Row(visible=False) as row_demo: | |
dropdown_demo = gr.Dropdown( | |
label="Demo Trajectory", | |
choices= ['topleft->bottomright', 'bottomleft->topright', 'topleft->bottomleft->bottomright', 'bottomright->topright->topleft', '"V"', '"^"', 'left->right->left->right', 'triangle'] | |
) | |
with gr.Row(visible=False) as row_diy: | |
dropdown_diy = gr.Dropdown( | |
label="Number of Keyframes", | |
choices=range(2, MAX_KEYS+1), | |
) | |
for i in range(MAX_KEYS): | |
with gr.Row(visible=False) as row: | |
text = gr.Textbox( | |
value=f"Keyframe #{i}", | |
interactive=False, | |
container = False, | |
lines = 3, | |
scale=1 | |
) | |
frame_ids = gr.Textbox( | |
None, | |
label=f"Frame Indices #{i}", | |
interactive=True, | |
scale=2 | |
) | |
h_position = gr.Slider(label='Position in Height', | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
scale=2) | |
w_position = gr.Slider(label='Position in Width', | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
scale=2) | |
frame_indices.append(frame_ids) | |
h_positions.append(h_position) | |
w_positions.append(w_position) | |
keyframes.append(row) | |
dropdown_demo.change(demo_update, dropdown_demo, dropdown_diy) | |
dropdown_diy.change(keyframe_update, dropdown_diy, keyframes) | |
dropdown_demo.change(demo_update_frame, dropdown_demo, frame_indices) | |
dropdown_demo.change(demo_update_h, dropdown_demo, h_positions) | |
dropdown_demo.change(demo_update_w, dropdown_demo, w_positions) | |
radio_mode.change(mode_update, radio_mode, [row_demo, row_diy]) | |
traj_plot = gr.Plot( | |
label="Trajectory" | |
) | |
h_positions[0].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
h_positions[1].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
h_positions[2].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
h_positions[3].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
h_positions[4].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
w_positions[0].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
w_positions[1].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
w_positions[2].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
w_positions[3].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
w_positions[4].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) | |
with gr.Row(): | |
with gr.Accordion('Useful FreeTraj Parameters (feel free to adjust these parameters based on your prompt): ', open=True): | |
with gr.Row(): | |
ddim_edit = gr.Slider(label='Editing Steps (larger for better control while losing some quality)', | |
minimum=0, | |
maximum=12, | |
step=1, | |
value=6) | |
seed = gr.Slider(label='Random Seed', | |
minimum=0, | |
maximum=10000, | |
step=1, | |
value=123) | |
with gr.Row(): | |
with gr.Accordion('Useless FreeTraj Parameters (mostly no need to adjust): ', open=False): | |
with gr.Row(): | |
ddim_steps = gr.Slider(label='DDIM Steps', | |
minimum=5, | |
maximum=50, | |
step=1, | |
value=50) | |
unconditional_guidance_scale = gr.Slider(label='Unconditional Guidance Scale', | |
minimum=1.0, | |
maximum=20.0, | |
step=0.1, | |
value=12.0) | |
with gr.Row(): | |
video_fps = gr.Slider(label='Video FPS (larger for quicker motion)', | |
minimum=8, | |
maximum=36, | |
step=4, | |
value=16) | |
save_fps = gr.Slider(label='Save FPS', | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=10) | |
with gr.Row(): | |
submit_btn = gr.Button("Generate", variant='primary') | |
with gr.Row(): | |
check_btn = gr.Button("Check Existing Results (in case of the connection lost)", variant='secondary') | |
with gr.Row(): | |
gr.Examples(label='Sample Prompts', examples=examples, inputs=[prompt_in, target_indices, ddim_edit, seed, ddim_steps, unconditional_guidance_scale, video_fps, save_fps, height_ratio, width_ratio, radio_mode, dropdown_diy, *frame_indices, *h_positions, *w_positions]) | |
demo_list = ['0026_0_0.4_0.4.gif', '0047_1_0.4_0.3.gif', '0051_1_0.4_0.4.gif'] | |
demo_pick = random.randint(0, len(demo_list) - 1) | |
with gr.Row(): | |
for i in range(len(demo_list)): | |
gr.Image(show_label = False, show_download_button = False, value='assets/' + demo_list[i]) | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
<h2 style="text-align: center;">Hints</h2> | |
<p style="text-align: center;"> | |
1. Choose trajectory mode <b>"ori"</b> to see whether the prompt works on the pre-trained model. | |
</p> | |
<p style="text-align: center;"> | |
2. Adjust the prompt or random seed to get a qualified video. | |
</p> | |
<p style="text-align: center;"> | |
3. Choose trajectory mode <b>"demo"</b> to see whether <b>FreeTraj</b> works or not. | |
</p> | |
<p style="text-align: center;"> | |
4. Choose trajectory mode <b>"diy"</b> to plan new trajectory. It may fail in some extreme cases. | |
</p> | |
""" | |
) | |
submit_btn.click(fn=infer, | |
inputs=[prompt_in, target_indices, ddim_edit, seed, ddim_steps, unconditional_guidance_scale, video_fps, save_fps, height_ratio, width_ratio, radio_mode, dropdown_diy, *frame_indices, *h_positions, *w_positions], | |
outputs=[video_result, video_result_bbox], | |
api_name="generate") | |
check_btn.click(fn=check, | |
inputs=[radio_mode], | |
outputs=[video_result, video_result_bbox], | |
api_name="check") | |
demo.queue(max_size=8).launch(show_api=True) |