Spaces:
Running
on
Zero
Running
on
Zero
import os, sys, glob | |
import numpy as np | |
from collections import OrderedDict | |
from decord import VideoReader, cpu | |
import cv2 | |
import torch | |
import torchvision | |
sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) | |
from lvdm.models.samplers.ddim import DDIMSampler | |
from lvdm.models.samplers.ddim_freetraj import DDIMSampler as DDIMFreeTrajSampler | |
from utils.utils_freetraj import get_freq_filter, freq_mix_3d, get_path, plan_path | |
def batch_ddim_sampling_freetraj(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\ | |
cfg_scale=1.0, temporal_cfg_scale=None, idx_list=[], input_traj=[], x_T_total=None, args=None, **kwargs): | |
ddim_sampler = DDIMFreeTrajSampler(model) | |
uncond_type = model.uncond_type | |
batch_size, channels, frames, h, w = noise_shape | |
## construct unconditional guidance | |
if cfg_scale != 1.0: | |
if uncond_type == "empty_seq": | |
prompts = batch_size * [""] | |
#prompts = N * T * [""] ## if is_imgbatch=True | |
uc_emb = model.get_learned_conditioning(prompts) | |
elif uncond_type == "zero_embed": | |
c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond | |
uc_emb = torch.zeros_like(c_emb) | |
## process image embedding token | |
if hasattr(model, 'embedder'): | |
uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device) | |
## img: b c h w >> b l c | |
uc_img = model.get_image_embeds(uc_img) | |
uc_emb = torch.cat([uc_emb, uc_img], dim=1) | |
if isinstance(cond, dict): | |
uc = {key:cond[key] for key in cond.keys()} | |
uc.update({'c_crossattn': [uc_emb]}) | |
else: | |
uc = uc_emb | |
else: | |
uc = None | |
total_shape = [args.n_samples, 1, channels, frames, h, w] | |
print('total_shape', total_shape) | |
if x_T_total is None: | |
x_T_total = torch.randn(total_shape, device=model.device).repeat(1, batch_size, 1, 1, 1, 1) | |
noise_flow = True | |
if noise_flow: | |
print('noise_flow') | |
BOX_SIZE_H = input_traj[0][2] - input_traj[0][1] | |
BOX_SIZE_W = input_traj[0][4] - input_traj[0][3] | |
PATHS = plan_path(input_traj) | |
sub_h = int(BOX_SIZE_H * h) | |
sub_w = int(BOX_SIZE_W * w) | |
x_T_sub = torch.randn([args.n_samples, 1, channels, sub_h, sub_w], device=model.device) | |
for i in range(frames): | |
h_start = int(PATHS[i][0] * h) | |
h_end = h_start + sub_h | |
w_start = int(PATHS[i][2] * w) | |
w_end = w_start + sub_w | |
# no mix | |
x_T_total[:, :, :, i, h_start:h_end, w_start:w_end] = x_T_sub | |
filter_shape = [ | |
1, | |
channels, | |
frames, | |
h, | |
w | |
] | |
freq_filter = get_freq_filter( | |
filter_shape, | |
device = model.device, | |
filter_type='butterworth', | |
n=4, | |
d_s=0.25, | |
d_t=0.1 | |
) | |
x_T_rand = torch.randn([1, 1, channels, frames, h, w], device=model.device) | |
x_T_total = freq_mix_3d(x_T_total.to(dtype=torch.float32), x_T_rand, LPF=freq_filter) | |
# x_T = None | |
batch_variants = [] | |
#batch_variants1, batch_variants2 = [], [] | |
for _ in range(n_samples): | |
x_T = x_T_total[_] | |
if ddim_sampler is not None: | |
kwargs.update({"clean_cond": True}) | |
samples, _ = ddim_sampler.sample(S=ddim_steps, | |
conditioning=cond, | |
batch_size=noise_shape[0], | |
shape=noise_shape[1:], | |
verbose=False, | |
unconditional_guidance_scale=cfg_scale, | |
unconditional_conditioning=uc, | |
eta=ddim_eta, | |
temporal_length=noise_shape[2], | |
conditional_guidance_scale_temporal=temporal_cfg_scale, | |
x_T=x_T, | |
idx_list=idx_list, | |
input_traj=input_traj, | |
ddim_edit = args.ddim_edit, | |
**kwargs | |
) | |
## reconstruct from latent to pixel space | |
batch_images = model.decode_first_stage_2DAE(samples) | |
batch_variants.append(batch_images) | |
## batch, <samples>, c, t, h, w | |
batch_variants = torch.stack(batch_variants, dim=1) | |
return batch_variants | |
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\ | |
cfg_scale=1.0, temporal_cfg_scale=None, **kwargs): | |
ddim_sampler = DDIMSampler(model) | |
uncond_type = model.uncond_type | |
batch_size = noise_shape[0] | |
## construct unconditional guidance | |
if cfg_scale != 1.0: | |
if uncond_type == "empty_seq": | |
prompts = batch_size * [""] | |
#prompts = N * T * [""] ## if is_imgbatch=True | |
uc_emb = model.get_learned_conditioning(prompts) | |
elif uncond_type == "zero_embed": | |
c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond | |
uc_emb = torch.zeros_like(c_emb) | |
## process image embedding token | |
if hasattr(model, 'embedder'): | |
uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device) | |
## img: b c h w >> b l c | |
uc_img = model.get_image_embeds(uc_img) | |
uc_emb = torch.cat([uc_emb, uc_img], dim=1) | |
if isinstance(cond, dict): | |
uc = {key:cond[key] for key in cond.keys()} | |
uc.update({'c_crossattn': [uc_emb]}) | |
else: | |
uc = uc_emb | |
else: | |
uc = None | |
x_T = None | |
batch_variants = [] | |
#batch_variants1, batch_variants2 = [], [] | |
for _ in range(n_samples): | |
if ddim_sampler is not None: | |
kwargs.update({"clean_cond": True}) | |
samples, _ = ddim_sampler.sample(S=ddim_steps, | |
conditioning=cond, | |
batch_size=noise_shape[0], | |
shape=noise_shape[1:], | |
verbose=False, | |
unconditional_guidance_scale=cfg_scale, | |
unconditional_conditioning=uc, | |
eta=ddim_eta, | |
temporal_length=noise_shape[2], | |
conditional_guidance_scale_temporal=temporal_cfg_scale, | |
x_T=x_T, | |
**kwargs | |
) | |
## reconstruct from latent to pixel space | |
batch_images = model.decode_first_stage_2DAE(samples) | |
batch_variants.append(batch_images) | |
## batch, <samples>, c, t, h, w | |
batch_variants = torch.stack(batch_variants, dim=1) | |
return batch_variants | |
def get_filelist(data_dir, ext='*'): | |
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext)) | |
file_list.sort() | |
return file_list | |
def get_dirlist(path): | |
list = [] | |
if (os.path.exists(path)): | |
files = os.listdir(path) | |
for file in files: | |
m = os.path.join(path,file) | |
if (os.path.isdir(m)): | |
list.append(m) | |
list.sort() | |
return list | |
def load_model_checkpoint(model, ckpt): | |
def load_checkpoint(model, ckpt, full_strict): | |
state_dict = torch.load(ckpt, map_location="cpu") | |
try: | |
## deepspeed | |
new_pl_sd = OrderedDict() | |
for key in state_dict['module'].keys(): | |
new_pl_sd[key[16:]]=state_dict['module'][key] | |
model.load_state_dict(new_pl_sd, strict=full_strict) | |
except: | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
model.load_state_dict(state_dict, strict=full_strict) | |
return model | |
load_checkpoint(model, ckpt, full_strict=True) | |
print('>>> model checkpoint loaded.') | |
return model | |
def load_prompts(prompt_file): | |
f = open(prompt_file, 'r') | |
prompt_list = [] | |
for idx, line in enumerate(f.readlines()): | |
l = line.strip() | |
if len(l) != 0: | |
prompt_list.append(l) | |
f.close() | |
return prompt_list | |
def load_idx(prompt_file): | |
f = open(prompt_file, 'r') | |
idx_list = [] | |
for idx, line in enumerate(f.readlines()): | |
l = line.strip() | |
if len(l) != 0: | |
indices = l.split(',') | |
indices_list = [] | |
for index in indices: | |
indices_list.append(int(index)) | |
idx_list.append(indices_list) | |
f.close() | |
return idx_list | |
def load_traj(prompt_file): | |
f = open(prompt_file, 'r') | |
traj_list = [] | |
for idx, line in enumerate(f.readlines()): | |
l = line.strip() | |
if len(l) != 0: | |
numbers = l.split(',') | |
numbers_list = [] | |
for number_index in range(len(numbers)): | |
if number_index == 0: | |
numbers_list.append(int(numbers[number_index])) | |
else: | |
numbers_list.append(float(numbers[number_index])) | |
traj_list.append(numbers_list) | |
f.close() | |
return traj_list | |
def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16): | |
''' | |
Notice about some special cases: | |
1. video_frames=-1 means to take all the frames (with fs=1) | |
2. when the total video frames is less than required, padding strategy will be used (repreated last frame) | |
''' | |
fps_list = [] | |
batch_tensor = [] | |
assert frame_stride > 0, "valid frame stride should be a positive interge!" | |
for filepath in filepath_list: | |
padding_num = 0 | |
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0]) | |
fps = vidreader.get_avg_fps() | |
total_frames = len(vidreader) | |
max_valid_frames = (total_frames-1) // frame_stride + 1 | |
if video_frames < 0: | |
## all frames are collected: fs=1 is a must | |
required_frames = total_frames | |
frame_stride = 1 | |
else: | |
required_frames = video_frames | |
query_frames = min(required_frames, max_valid_frames) | |
frame_indices = [frame_stride*i for i in range(query_frames)] | |
## [t,h,w,c] -> [c,t,h,w] | |
frames = vidreader.get_batch(frame_indices) | |
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() | |
frame_tensor = (frame_tensor / 255. - 0.5) * 2 | |
if max_valid_frames < required_frames: | |
padding_num = required_frames - max_valid_frames | |
frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1) | |
print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.') | |
batch_tensor.append(frame_tensor) | |
sample_fps = int(fps/frame_stride) | |
fps_list.append(sample_fps) | |
return torch.stack(batch_tensor, dim=0) | |
from PIL import Image | |
def load_image_batch(filepath_list, image_size=(256,256)): | |
batch_tensor = [] | |
for filepath in filepath_list: | |
_, filename = os.path.split(filepath) | |
_, ext = os.path.splitext(filename) | |
if ext == '.mp4': | |
vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0]) | |
frame = vidreader.get_batch([0]) | |
img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float() | |
elif ext == '.png' or ext == '.jpg': | |
img = Image.open(filepath).convert("RGB") | |
rgb_img = np.array(img, np.float32) | |
#bgr_img = cv2.imread(filepath, cv2.IMREAD_COLOR) | |
#bgr_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) | |
rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR) | |
img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float() | |
else: | |
print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]') | |
raise NotImplementedError | |
img_tensor = (img_tensor / 255. - 0.5) * 2 | |
batch_tensor.append(img_tensor) | |
return torch.stack(batch_tensor, dim=0) | |
def save_videos(batch_tensors, savedir, filenames, fps=10): | |
# b,samples,c,t,h,w | |
n_samples = batch_tensors.shape[1] | |
for idx, vid_tensor in enumerate(batch_tensors): | |
video = vid_tensor.detach().cpu() | |
video = torch.clamp(video.float(), -1., 1.) | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
savepath = os.path.join(savedir, f"{filenames[idx]}.mp4") | |
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def save_videos_with_bbox(batch_tensors, savedir, conddir, filenames, fps=10, input_traj=[]): | |
# b,samples,c,t,h,w | |
BOX_SIZE_H = input_traj[0][2] - input_traj[0][1] | |
BOX_SIZE_W = input_traj[0][4] - input_traj[0][3] | |
PATHS = plan_path(input_traj) | |
n_samples = batch_tensors.shape[1] | |
for idx, vid_tensor in enumerate(batch_tensors): | |
video = vid_tensor.detach().cpu() | |
video = torch.clamp(video.float(), -1., 1.) | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
h_len = video.shape[3] | |
w_len = video.shape[4] | |
sub_h = int(BOX_SIZE_H * h_len) | |
sub_w = int(BOX_SIZE_W * w_len) | |
for i in range(video.shape[1]): | |
single_video = video[:, i] | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in single_video] #[3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
savepath = os.path.join(savedir, f"{filenames[idx]}_{str(i)}.mp4") | |
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
for j in range(video.shape[0]): | |
h_start = int(PATHS[j][0] * h_len) | |
h_end = h_start + sub_h | |
w_start = int(PATHS[j][2] * w_len) | |
w_end = w_start + sub_w | |
h_start = max(1, h_start) | |
h_end = min(h_len-1, h_end) | |
w_start = max(1, w_start) | |
w_end = min(w_len-1, w_end) | |
grid[j, h_start-1:h_end+1, w_start-1:w_start+2, :] = torch.ones_like(grid[j, h_start-1:h_end+1, w_start-1:w_start+2, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) | |
grid[j, h_start-1:h_end+1, w_end-2:w_end+1, :] = torch.ones_like(grid[j, h_start-1:h_end+1, w_end-2:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) | |
grid[j, h_start-1:h_start+2, w_start-1:w_end+1, :] = torch.ones_like(grid[j, h_start-1:h_start+2, w_start-1:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) | |
grid[j, h_end-2:h_end+1, w_start-1:w_end+1, :] = torch.ones_like(grid[j, h_end-2:h_end+1, w_start-1:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) | |
bbox_savepath = os.path.join(conddir, f"{filenames[idx]}_{str(i)}.mp4") | |
torchvision.io.write_video(bbox_savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |