Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.fft as fft | |
import math | |
def get_longpath(BOX_SIZE_H=0.3, BOX_SIZE_W=0.3, input_mode=4): | |
if input_mode == 1: | |
# mode 1 | |
inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], | |
[7, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 15 * 7, (1-BOX_SIZE_W) / 15 * 7 + BOX_SIZE_W], | |
[8, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 15 * 8, (1-BOX_SIZE_W) / 15 * 8 + BOX_SIZE_W], | |
[15, 0, 0 + BOX_SIZE_H, 1-BOX_SIZE_W, 1], | |
[16, 0.1, 0.1 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], | |
[25, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], | |
[31, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], | |
[32, 1-BOX_SIZE_H, 1, 0, 0 + BOX_SIZE_W], | |
[39, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 15 * 7, (1-BOX_SIZE_W) / 15 * 7 + BOX_SIZE_W], | |
[40, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 15 * 8, (1-BOX_SIZE_W) / 15 * 8 + BOX_SIZE_W], | |
[47, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1], | |
[48, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], | |
[57, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], | |
[63, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W]] | |
elif input_mode == 2: | |
# mode 2 | |
inputs = [[0, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], | |
[6, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], | |
[15, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], | |
[16, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], | |
[22, 0.1, 0.1 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], | |
[31, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], | |
[32, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], | |
[41, 0.1, 0.1 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], | |
[47, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], | |
[48, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], | |
[57, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], | |
[63, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W]] | |
elif input_mode == 3: | |
# mode 3 |||| | |
inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], | |
[9, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 7 * 1, (1-BOX_SIZE_W) / 7 * 1 + BOX_SIZE_W], | |
[18, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 7 * 2, (1-BOX_SIZE_W) / 7 * 2 + BOX_SIZE_W], | |
[27, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 7 * 3, (1-BOX_SIZE_W) / 7 * 3 + BOX_SIZE_W], | |
[36, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 7 * 4, (1-BOX_SIZE_W) / 7 * 4 + BOX_SIZE_W], | |
[45, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 7 * 5, (1-BOX_SIZE_W) / 7 * 5 + BOX_SIZE_W], | |
[54, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 7 * 6, (1-BOX_SIZE_W) / 7 * 6 + BOX_SIZE_W], | |
[63, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1]] | |
elif input_mode == 4: | |
# mode 4 ---- | |
inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], | |
[9, (1-BOX_SIZE_H) / 7 * 1, (1-BOX_SIZE_H) / 7 * 1 + BOX_SIZE_H, 1-BOX_SIZE_W, 1], | |
[18, (1-BOX_SIZE_H) / 7 * 2, (1-BOX_SIZE_H) / 7 * 2 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], | |
[27, (1-BOX_SIZE_H) / 7 * 3, (1-BOX_SIZE_H) / 7 * 3 + BOX_SIZE_H, 1-BOX_SIZE_W, 1], | |
[36, (1-BOX_SIZE_H) / 7 * 4, (1-BOX_SIZE_H) / 7 * 4 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], | |
[45, (1-BOX_SIZE_H) / 7 * 5, (1-BOX_SIZE_H) / 7 * 5 + BOX_SIZE_H, 1-BOX_SIZE_W, 1], | |
[54, (1-BOX_SIZE_H) / 7 * 6, (1-BOX_SIZE_H) / 7 * 6 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], | |
[63, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1]] | |
else: | |
print('error') | |
exit() | |
outputs = plan_path(inputs) | |
# print(outputs) | |
return outputs | |
def get_path(BOX_SIZE_H=0.3, BOX_SIZE_W=0.3, input_mode=0): | |
if input_mode == 0: | |
# \ d | |
inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], [15, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1]] | |
elif input_mode == 1: | |
# / re d | |
inputs = [[0, 0, 0 + BOX_SIZE_H, 1-BOX_SIZE_W, 1], [15, 1-BOX_SIZE_H, 1, 0, 0 + BOX_SIZE_W]] | |
elif input_mode == 2: | |
# L | |
inputs = [[0, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], [6, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], [15, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9]] | |
elif input_mode == 3: | |
# re L | |
inputs = [[0, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], [6, 0.1, 0.1 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], [15, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W]] | |
elif input_mode == 4: | |
# V | |
inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], [7, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 15 * 7, (1-BOX_SIZE_W) / 15 * 7 + BOX_SIZE_W], [8, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 15 * 8, (1-BOX_SIZE_W) / 15 * 8 + BOX_SIZE_W], [15, 0, 0 + BOX_SIZE_H, 1-BOX_SIZE_W, 1]] | |
elif input_mode == 5: | |
# re V | |
inputs = [[0, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1], [7, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 15 * 8, (1-BOX_SIZE_W) / 15 * 8 + BOX_SIZE_W], [8, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 15 * 7, (1-BOX_SIZE_W) / 15 * 7 + BOX_SIZE_W], [15, 1-BOX_SIZE_H, 1, 0, 0 + BOX_SIZE_W]] | |
elif input_mode == 6: | |
# -- goback | |
inputs = [[0, 0.35, 0.35 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], [7, 0.35, 0.35 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], [8, 0.35, 0.35 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], [15, 0.35, 0.35 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W]] | |
elif input_mode == 7: | |
# tri | |
inputs = [[0, 0.1, 0.1 + BOX_SIZE_H, 0.35, 0.35 + BOX_SIZE_W], [5, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], [10, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], [15, 0.1, 0.1 + BOX_SIZE_H, 0.35, 0.35 + BOX_SIZE_W]] | |
outputs = plan_path(inputs) | |
return outputs | |
# input: List([frame, h_start, h_end, w_start, w_end], ...) | |
# return: List([h_start, h_end, w_start, w_end], ...) | |
def plan_path(input, video_length = 16): | |
len_input = len(input) | |
path = [input[0][1:]] | |
for i in range(1, len_input): | |
start = input[i-1] | |
end = input[i] | |
start_frame = start[0] | |
end_frame = end[0] | |
h_start_change = (end[1] - start[1]) / (end_frame - start_frame) | |
h_end_change = (end[2] - start[2]) / (end_frame - start_frame) | |
w_start_change = (end[3] - start[3]) / (end_frame - start_frame) | |
w_end_change = (end[4] - start[4]) / (end_frame - start_frame) | |
for j in range(start_frame+1, end_frame + 1): | |
increase_frame = j - start_frame | |
path += [[increase_frame * h_start_change + start[1], increase_frame * h_end_change + start[2], increase_frame * w_start_change + start[3], increase_frame * w_end_change + start[4]]] | |
if input[0][0] > 0: | |
h_change = path[1][0] - path[0][0] | |
w_change = path[1][2] - path[0][2] | |
for i in range(input[0][0]): | |
path = [path[0][0] - h_change, path[0][1] - h_change, path[0][2] - w_change, path[0][3] - w_change] + path | |
if input[-1][0] < video_length - 1: | |
h_change = path[-1][0] - path[-2][0] | |
w_change = path[-1][2] - path[-2][2] | |
for i in range(video_length - 1 - input[-1][0]): | |
path = path + [path[-1][0] + h_change, path[-1][1] + h_change, path[-1][2] + w_change, path[-1][3] + w_change] | |
return path | |
def gaussian_2d(x=0, y=0, mx=0, my=0, sx=1, sy=1): | |
""" 2d Gaussian weight function | |
""" | |
gaussian_map = ( | |
1 | |
/ (2 * math.pi * sx * sy) | |
* torch.exp(-((x - mx) ** 2 / (2 * sx**2) + (y - my) ** 2 / (2 * sy**2))) | |
) | |
gaussian_map.div_(gaussian_map.max()) | |
return gaussian_map | |
def gaussian_weight(height=32, width=32, KERNEL_DIVISION=3.0): | |
x = torch.linspace(0, height, height) | |
y = torch.linspace(0, width, width) | |
x, y = torch.meshgrid(x, y, indexing="ij") | |
noise_patch = ( | |
gaussian_2d( | |
x, | |
y, | |
mx=int(height / 2), | |
my=int(width / 2), | |
sx=float(height / KERNEL_DIVISION), | |
sy=float(width / KERNEL_DIVISION), | |
) | |
).half() | |
return noise_patch | |
def freq_mix_3d(x, noise, LPF): | |
""" | |
Noise reinitialization. | |
Args: | |
x: diffused latent | |
noise: randomly sampled noise | |
LPF: low pass filter | |
""" | |
# FFT | |
x_freq = fft.fftn(x, dim=(-3, -2, -1)) | |
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1)) | |
noise_freq = fft.fftn(noise, dim=(-3, -2, -1)) | |
noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1)) | |
# frequency mix | |
HPF = 1 - LPF | |
x_freq_low = x_freq * LPF | |
noise_freq_high = noise_freq * HPF | |
x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain | |
# IFFT | |
x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1)) | |
x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real | |
return x_mixed | |
def get_freq_filter(shape, device, filter_type, n, d_s, d_t): | |
""" | |
Form the frequency filter for noise reinitialization. | |
Args: | |
shape: shape of latent (B, C, T, H, W) | |
filter_type: type of the freq filter | |
n: (only for butterworth) order of the filter, larger n ~ ideal, smaller n ~ gaussian | |
d_s: normalized stop frequency for spatial dimensions (0.0-1.0) | |
d_t: normalized stop frequency for temporal dimension (0.0-1.0) | |
""" | |
if filter_type == "gaussian": | |
return gaussian_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device) | |
elif filter_type == "ideal": | |
return ideal_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device) | |
elif filter_type == "box": | |
return box_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device) | |
elif filter_type == "butterworth": | |
return butterworth_low_pass_filter(shape=shape, n=n, d_s=d_s, d_t=d_t).to(device) | |
else: | |
raise NotImplementedError | |
def gaussian_low_pass_filter(shape, d_s=0.25, d_t=0.25): | |
""" | |
Compute the gaussian low pass filter mask. | |
Args: | |
shape: shape of the filter (volume) | |
d_s: normalized stop frequency for spatial dimensions (0.0-1.0) | |
d_t: normalized stop frequency for temporal dimension (0.0-1.0) | |
""" | |
T, H, W = shape[-3], shape[-2], shape[-1] | |
mask = torch.zeros(shape) | |
if d_s==0 or d_t==0: | |
return mask | |
for t in range(T): | |
for h in range(H): | |
for w in range(W): | |
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2) | |
mask[..., t,h,w] = math.exp(-1/(2*d_s**2) * d_square) | |
return mask | |
def butterworth_low_pass_filter(shape, n=4, d_s=0.25, d_t=0.25): | |
""" | |
Compute the butterworth low pass filter mask. | |
Args: | |
shape: shape of the filter (volume) | |
n: order of the filter, larger n ~ ideal, smaller n ~ gaussian | |
d_s: normalized stop frequency for spatial dimensions (0.0-1.0) | |
d_t: normalized stop frequency for temporal dimension (0.0-1.0) | |
""" | |
T, H, W = shape[-3], shape[-2], shape[-1] | |
mask = torch.zeros(shape) | |
if d_s==0 or d_t==0: | |
return mask | |
for t in range(T): | |
for h in range(H): | |
for w in range(W): | |
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2) | |
mask[..., t,h,w] = 1 / (1 + (d_square / d_s**2)**n) | |
return mask | |
def ideal_low_pass_filter(shape, d_s=0.25, d_t=0.25): | |
""" | |
Compute the ideal low pass filter mask. | |
Args: | |
shape: shape of the filter (volume) | |
d_s: normalized stop frequency for spatial dimensions (0.0-1.0) | |
d_t: normalized stop frequency for temporal dimension (0.0-1.0) | |
""" | |
T, H, W = shape[-3], shape[-2], shape[-1] | |
mask = torch.zeros(shape) | |
if d_s==0 or d_t==0: | |
return mask | |
for t in range(T): | |
for h in range(H): | |
for w in range(W): | |
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2) | |
mask[..., t,h,w] = 1 if d_square <= d_s*2 else 0 | |
return mask | |
def box_low_pass_filter(shape, d_s=0.25, d_t=0.25): | |
""" | |
Compute the ideal low pass filter mask (approximated version). | |
Args: | |
shape: shape of the filter (volume) | |
d_s: normalized stop frequency for spatial dimensions (0.0-1.0) | |
d_t: normalized stop frequency for temporal dimension (0.0-1.0) | |
""" | |
T, H, W = shape[-3], shape[-2], shape[-1] | |
mask = torch.zeros(shape) | |
if d_s==0 or d_t==0: | |
return mask | |
threshold_s = round(int(H // 2) * d_s) | |
threshold_t = round(T // 2 * d_t) | |
cframe, crow, ccol = T // 2, H // 2, W //2 | |
mask[..., cframe - threshold_t:cframe + threshold_t, crow - threshold_s:crow + threshold_s, ccol - threshold_s:ccol + threshold_s] = 1.0 | |
return mask | |