import sys import random import gradio as gr import matplotlib.pyplot as plt import os import argparse import random from omegaconf import OmegaConf import torch import torchvision from pytorch_lightning import seed_everything from huggingface_hub import hf_hub_download import spaces sys.path.insert(0, "scripts/evaluation") from funcs import ( batch_ddim_sampling, batch_ddim_sampling_freetraj, load_model_checkpoint, ) from utils.utils import instantiate_from_config from utils.utils_freetraj import plan_path MAX_KEYS = 5 ckpt_dir_512 = "checkpoints/base_512_v2" ckpt_path_512 = "checkpoints/base_512_v2/model.ckpt" if not os.path.exists(ckpt_path_512): os.makedirs(ckpt_dir_512, exist_ok=True) hf_hub_download(repo_id="VideoCrafter/VideoCrafter2", filename="model.ckpt", local_dir=ckpt_dir_512, force_download=True) print('Model Loaded.') def check_move(trajectory, video_length=16): traj_len = len(trajectory) if traj_len < 2: return False prev_pos = trajectory[0] for i in range(1, traj_len): cur_pos = trajectory[i] if cur_pos[0] > video_length - 1: return False if (cur_pos[0] - prev_pos[0]) * ((cur_pos[1] - prev_pos[1]) ** 2 + (cur_pos[2] - prev_pos[2]) ** 2) ** 0.5 < 0.02: print("Too small movement, please use ori mode.") return False prev_pos = cur_pos return True @spaces.GPU(duration=300) def infer(*user_args): prompt_in = user_args[0] target_indices = user_args[1] ddim_edit = user_args[2] seed = user_args[3] ddim_steps = user_args[4] unconditional_guidance_scale = user_args[5] video_fps = user_args[6] save_fps = user_args[7] height_ratio = user_args[8] width_ratio = user_args[9] radio_mode = user_args[10] dropdown_diy = user_args[11] frame_indices = user_args[-3 * MAX_KEYS: -2 * MAX_KEYS] h_positions = user_args[-2 * MAX_KEYS: -MAX_KEYS] w_positions = user_args[-MAX_KEYS:] print(user_args) video_length = 16 width = 512 height = 320 if radio_mode == 'ori': config_512 = "configs/inference_t2v_512_v2.0.yaml" else: config_512 = "configs/inference_t2v_freetraj_512_v2.0.yaml" trajectory = [] for i in range(dropdown_diy): trajectory.append([int(frame_indices[i]), h_positions[i], w_positions[i]]) trajectory.sort() print(trajectory) if not check_move(trajectory): print("Error trajectory.") input_traj = [] h_remain = 1 - height_ratio w_remain = 1 - width_ratio for i in trajectory: h_relative = i[1] * h_remain w_relative = i[2] * w_remain input_traj.append([i[0], h_relative, h_relative+height_ratio, w_relative, w_relative+width_ratio]) if len(target_indices) < 1: indices_list = [1, 2] else: indices_list = target_indices.split(',') idx_list = [] for i in indices_list: idx_list.append(int(i)) config_512 = OmegaConf.load(config_512) model_config_512 = config_512.pop("model", OmegaConf.create()) model = instantiate_from_config(model_config_512) model = model.cuda() model = load_model_checkpoint(model, ckpt_path_512) model.eval() if seed is None: seed = int.from_bytes(os.urandom(2), "big") print(f"Using seed: {seed}") seed_everything(seed) args = argparse.Namespace( mode="base", savefps=save_fps, n_samples=1, ddim_steps=ddim_steps, ddim_eta=0.0, bs=1, height=height, width=width, frames=video_length, fps=video_fps, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_guidance_scale_temporal=None, cond_input=None, ddim_edit = ddim_edit, ) ## latent noise shape h, w = args.height // 8, args.width // 8 frames = model.temporal_length if args.frames < 0 else args.frames channels = model.channels batch_size = 1 noise_shape = [batch_size, channels, frames, h, w] fps = torch.tensor([args.fps] * batch_size).to(model.device).long() prompts = [prompt_in] text_emb = model.get_learned_conditioning(prompts) cond = {"c_crossattn": [text_emb], "fps": fps} ## inference if radio_mode == 'ori': batch_samples = batch_ddim_sampling( model, cond, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, args=args, ) else: batch_samples = batch_ddim_sampling_freetraj( model, cond, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, idx_list = idx_list, input_traj = input_traj, args=args, ) vid_tensor = batch_samples[0] video = vid_tensor.detach().cpu() video = torch.clamp(video.float(), -1.0, 1.0) video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w if radio_mode == 'ori': video_path = "output.mp4" video_bbox_path = "output.mp4" frame_grids = [ torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples)) for framesheet in video ] # [3, 1*h, n*w] grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] grid = (grid + 1.0) / 2.0 grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) torchvision.io.write_video( video_path, grid, fps=args.savefps, video_codec="h264", options={"crf": "10"}, ) else: video_path = "output_freetraj.mp4" video_bbox_path = "output_freetraj_bbox.mp4" frame_grids = [ torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples)) for framesheet in video ] # [3, 1*h, n*w] grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] grid = (grid + 1.0) / 2.0 grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) torchvision.io.write_video( video_path, grid, fps=args.savefps, video_codec="h264", options={"crf": "10"}, ) BOX_SIZE_H = input_traj[0][2] - input_traj[0][1] BOX_SIZE_W = input_traj[0][4] - input_traj[0][3] PATHS = plan_path(input_traj) h_len = grid.shape[1] w_len = grid.shape[2] sub_h = int(BOX_SIZE_H * h_len) sub_w = int(BOX_SIZE_W * w_len) for j in range(grid.shape[0]): h_start = int(PATHS[j][0] * h_len) h_end = h_start + sub_h w_start = int(PATHS[j][2] * w_len) w_end = w_start + sub_w h_start = max(1, h_start) h_end = min(h_len-1, h_end) w_start = max(1, w_start) w_end = min(w_len-1, w_end) grid[j, h_start-1:h_end+1, w_start-1:w_start+2, :] = torch.ones_like(grid[j, h_start-1:h_end+1, w_start-1:w_start+2, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) grid[j, h_start-1:h_end+1, w_end-2:w_end+1, :] = torch.ones_like(grid[j, h_start-1:h_end+1, w_end-2:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) grid[j, h_start-1:h_start+2, w_start-1:w_end+1, :] = torch.ones_like(grid[j, h_start-1:h_start+2, w_start-1:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) grid[j, h_end-2:h_end+1, w_start-1:w_end+1, :] = torch.ones_like(grid[j, h_end-2:h_end+1, w_start-1:w_end+1, :]) * torch.Tensor([127, 255, 127]).view(1, 1, 3) torchvision.io.write_video( video_bbox_path, grid, fps=args.savefps, video_codec="h264", options={"crf": "10"}, ) return video_path, video_bbox_path examples = [ ["A squirrel jumping from one tree to another.",], ["A bear climbing down a tree after spotting a threat.",], ["A deer walking in a snowy field.",], ["A lion walking in the savanna grass.",], ["A kangaroo jumping in the Australian outback.",], ["A corgi running on the grassland on the grassland.",], ["A horse galloping on a street.",], ["A majestic eagle soaring high above the treetops, surveying its territory.",], ] css = """ #col-container {max-width: 1024px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} .animate-spin { animation: spin 1s linear infinite; } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 15rem; height: 36px; } div#share-btn-container > div { flex-direction: row; background: black; align-items: center; } #share-btn-container:hover { background-color: #060606; } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important; right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } #share-btn-container.hidden { display: none!important; } img[src*='#center'] { display: inline-block; margin: unset; } .footer { margin-bottom: 45px; margin-top: 10px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } """ def mode_update(mode): if mode == 'demo': trajectories_mode = [gr.Row(visible=True), gr.Row(visible=False)] elif mode == 'diy': trajectories_mode = [gr.Row(visible=False), gr.Row(visible=True)] else: trajectories_mode = [gr.Row(visible=False), gr.Row(visible=False)] return trajectories_mode def keyframe_update(num): keyframes = [] if type(num) != int: num = 0 for i in range(num): keyframes.append(gr.Row(visible=True)) for i in range(MAX_KEYS - num): keyframes.append(gr.Row(visible=False)) return keyframes def demo_update(mode): if mode == 'topleft->bottomright': num = 2 elif mode == 'bottomleft->topright': num = 2 elif mode == 'topleft->bottomleft->bottomright': num = 3 elif mode == 'bottomright->topright->topleft': num = 3 elif mode == '"V"': num = 4 elif mode == '"^"': num = 4 elif mode == 'left->right->left->right': num = 4 elif mode == 'triangle': num = 4 else: num = 0 return num def demo_update_frame(mode): frame_indices = [] if mode == 'topleft->bottomright': num = 2 frame_indices.append(gr.Text(value=0)) frame_indices.append(gr.Text(value=15)) elif mode == 'bottomleft->topright': num = 2 frame_indices.append(gr.Text(value=0)) frame_indices.append(gr.Text(value=15)) elif mode == 'topleft->bottomleft->bottomright': num = 3 frame_indices.append(gr.Text(value=0)) frame_indices.append(gr.Text(value=9)) frame_indices.append(gr.Text(value=15)) elif mode == 'bottomright->topright->topleft': num = 3 frame_indices.append(gr.Text(value=0)) frame_indices.append(gr.Text(value=6)) frame_indices.append(gr.Text(value=15)) elif mode == '"V"': num = 4 frame_indices.append(gr.Text(value=0)) frame_indices.append(gr.Text(value=7)) frame_indices.append(gr.Text(value=8)) frame_indices.append(gr.Text(value=15)) elif mode == '"^"': num = 4 frame_indices.append(gr.Text(value=0)) frame_indices.append(gr.Text(value=7)) frame_indices.append(gr.Text(value=8)) frame_indices.append(gr.Text(value=15)) elif mode == 'left->right->left->right': num = 4 frame_indices.append(gr.Text(value=0)) frame_indices.append(gr.Text(value=5)) frame_indices.append(gr.Text(value=10)) frame_indices.append(gr.Text(value=15)) elif mode == 'triangle': num = 4 frame_indices.append(gr.Text(value=0)) frame_indices.append(gr.Text(value=5)) frame_indices.append(gr.Text(value=10)) frame_indices.append(gr.Text(value=15)) else: num = 0 for i in range(MAX_KEYS - num): frame_indices.append(gr.Text()) return frame_indices def demo_update_h(mode): h_positions = [] if mode == 'topleft->bottomright': num = 2 h_positions.append(gr.Slider(value=0.1)) h_positions.append(gr.Slider(value=0.9)) elif mode == 'bottomleft->topright': num = 2 h_positions.append(gr.Slider(value=0.9)) h_positions.append(gr.Slider(value=0.1)) elif mode == 'topleft->bottomleft->bottomright': num = 3 h_positions.append(gr.Slider(value=0.1)) h_positions.append(gr.Slider(value=0.9)) h_positions.append(gr.Slider(value=0.9)) elif mode == 'bottomright->topright->topleft': num = 3 h_positions.append(gr.Slider(value=0.9)) h_positions.append(gr.Slider(value=0.1)) h_positions.append(gr.Slider(value=0.1)) elif mode == '"V"': num = 4 h_positions.append(gr.Slider(value=0.1)) h_positions.append(gr.Slider(value=0.9)) h_positions.append(gr.Slider(value=0.9)) h_positions.append(gr.Slider(value=0.1)) elif mode == '"^"': num = 4 h_positions.append(gr.Slider(value=0.9)) h_positions.append(gr.Slider(value=0.1)) h_positions.append(gr.Slider(value=0.1)) h_positions.append(gr.Slider(value=0.9)) elif mode == 'left->right->left->right': num = 4 h_positions.append(gr.Slider(value=0.5)) h_positions.append(gr.Slider(value=0.5)) h_positions.append(gr.Slider(value=0.5)) h_positions.append(gr.Slider(value=0.5)) elif mode == 'triangle': num = 4 h_positions.append(gr.Slider(value=0.1)) h_positions.append(gr.Slider(value=0.9)) h_positions.append(gr.Slider(value=0.9)) h_positions.append(gr.Slider(value=0.1)) else: num = 0 for i in range(MAX_KEYS - num): h_positions.append(gr.Slider()) return h_positions def demo_update_w(mode): w_positions = [] if mode == 'topleft->bottomright': num = 2 w_positions.append(gr.Slider(value=0.1)) w_positions.append(gr.Slider(value=0.9)) elif mode == 'bottomleft->topright': num = 2 w_positions.append(gr.Slider(value=0.1)) w_positions.append(gr.Slider(value=0.9)) elif mode == 'topleft->bottomleft->bottomright': num = 3 w_positions.append(gr.Slider(value=0.1)) w_positions.append(gr.Slider(value=0.1)) w_positions.append(gr.Slider(value=0.9)) elif mode == 'bottomright->topright->topleft': num = 3 w_positions.append(gr.Slider(value=0.9)) w_positions.append(gr.Slider(value=0.9)) w_positions.append(gr.Slider(value=0.1)) elif mode == '"V"': num = 4 w_positions.append(gr.Slider(value=0.1)) w_positions.append(gr.Slider(value=0.8/15*7 + 0.1)) w_positions.append(gr.Slider(value=0.8/15*8 + 0.1)) w_positions.append(gr.Slider(value=0.9)) elif mode == '"^"': num = 4 w_positions.append(gr.Slider(value=0.9)) w_positions.append(gr.Slider(value=0.8/15*8 + 0.1)) w_positions.append(gr.Slider(value=0.8/15*7 + 0.1)) w_positions.append(gr.Slider(value=0.1)) elif mode == 'left->right->left->right': num = 4 w_positions.append(gr.Slider(value=0.1)) w_positions.append(gr.Slider(value=0.9)) w_positions.append(gr.Slider(value=0.1)) w_positions.append(gr.Slider(value=0.9)) elif mode == 'triangle': num = 4 w_positions.append(gr.Slider(value=0.5)) w_positions.append(gr.Slider(value=0.9)) w_positions.append(gr.Slider(value=0.1)) w_positions.append(gr.Slider(value=0.5)) else: num = 0 for i in range(MAX_KEYS - num): w_positions.append(gr.Slider()) return w_positions def plot_update(*positions): key_length = positions[-1] frame_indices = positions[:key_length] if type(key_length) != int or len(frame_indices) < 2: traj_plot = gr.Plot( label="Trajectory" ) return traj_plot frame_indices = [int(i) for i in frame_indices] h_positions = positions[MAX_KEYS:MAX_KEYS+key_length] w_positions = positions[2*MAX_KEYS:2*MAX_KEYS+key_length] frame_indices, h_positions, w_positions = zip(*sorted(zip(frame_indices, h_positions, w_positions))) plt.cla() plt.xlim(0, 1) plt.ylim(0, 1) plt.gca().invert_yaxis() plt.gca().xaxis.tick_top() plt.plot(w_positions, h_positions, linestyle='-', marker = 'o', markerfacecolor='r') traj_plot = gr.Plot( label="Trajectory", value = plt ) return traj_plot with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( """

FreeTraj

Tuning-Free Trajectory Control in Video Diffusion Models

[arXiv]      [Project Page]      [Code]

""" ) keyframes = [] frame_indices = [] h_positions = [] w_positions = [] with gr.Row(): video_result = gr.Video(label="Video Output") video_result_bbox = gr.Video(label="Video Output with BBox") with gr.Group(): with gr.Row(): prompt_in = gr.Textbox(label="Prompt", placeholder="A corgi running on the grassland on the grassland.", scale = 5) target_indices = gr.Textbox(label="Target Indices (1 for the first word, necessary!)", placeholder="1,2", scale = 2) with gr.Row(): radio_mode = gr.Radio(label='Trajectory Mode', choices = ['demo', 'diy', 'ori'], scale = 1) height_ratio = gr.Slider(label='Height Ratio of BBox', minimum=0.2, maximum=0.4, step=0.01, value=0.3, scale = 1) width_ratio = gr.Slider(label='Width Ratio of BBox', minimum=0.2, maximum=0.4, step=0.01, value=0.3, scale = 1) with gr.Row(visible=False) as row_demo: dropdown_demo = gr.Dropdown( label="Demo Trajectory", choices= ['topleft->bottomright', 'bottomleft->topright', 'topleft->bottomleft->bottomright', 'bottomright->topright->topleft', '"V"', '"^"', 'left->right->left->right', 'triangle'] ) with gr.Row(visible=False) as row_diy: dropdown_diy = gr.Dropdown( label="Number of keyframes", choices=range(2, MAX_KEYS+1), ) for i in range(MAX_KEYS): with gr.Row(visible=False) as row: text = gr.Textbox( value=f"Keyframe #{i}", interactive=False, container = False, lines = 3, scale=1 ) frame_ids = gr.Textbox( None, label=f"Frame Indices #{i}", interactive=True, scale=2 ) h_position = gr.Slider(label='Position in Height', minimum=0.0, maximum=1.0, step=0.01, scale=2) w_position = gr.Slider(label='Position in Width', minimum=0.0, maximum=1.0, step=0.01, scale=2) frame_indices.append(frame_ids) h_positions.append(h_position) w_positions.append(w_position) keyframes.append(row) dropdown_demo.change(demo_update, dropdown_demo, dropdown_diy) dropdown_diy.change(keyframe_update, dropdown_diy, keyframes) dropdown_demo.change(demo_update_frame, dropdown_demo, frame_indices) dropdown_demo.change(demo_update_h, dropdown_demo, h_positions) dropdown_demo.change(demo_update_w, dropdown_demo, w_positions) radio_mode.change(mode_update, radio_mode, [row_demo, row_diy]) traj_plot = gr.Plot( label="Trajectory" ) h_positions[0].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) h_positions[1].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) h_positions[2].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) h_positions[3].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) h_positions[4].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) w_positions[0].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) w_positions[1].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) w_positions[2].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) w_positions[3].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) w_positions[4].change(plot_update, frame_indices + h_positions + w_positions + [dropdown_diy], traj_plot) with gr.Row(): with gr.Accordion('Useful FreeTraj Parameters (feel free to adjust these parameters based on your prompt): ', open=True): with gr.Row(): ddim_edit = gr.Slider(label='Editing Steps (larger for better control while losing some quality)', minimum=0, maximum=12, step=1, value=6) seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123) with gr.Row(): with gr.Accordion('Useless FreeTraj Parameters (mostly no need to adjust): ', open=False): with gr.Row(): ddim_steps = gr.Slider(label='DDIM Steps', minimum=5, maximum=200, step=1, value=50) unconditional_guidance_scale = gr.Slider(label='Unconditional Guidance Scale', minimum=1.0, maximum=20.0, step=0.1, value=12.0) with gr.Row(): video_fps = gr.Slider(label='Video FPS (larger for quicker motion)', minimum=8, maximum=36, step=4, value=16) save_fps = gr.Slider(label='Save FPS', minimum=1, maximum=30, step=1, value=10) with gr.Row(): submit_btn = gr.Button("Generate", variant='primary') with gr.Row(): gr.Examples(label='Sample Prompts', examples=examples, inputs=[prompt_in, target_indices, ddim_edit, seed, ddim_steps, unconditional_guidance_scale, video_fps, save_fps, height_ratio, width_ratio, radio_mode, dropdown_diy, *frame_indices, *h_positions, *w_positions]) demo_list = ['0026_0_0.4_0.4.gif', '0047_1_0.4_0.3.gif', '0051_1_0.4_0.4.gif'] demo_pick = random.randint(0, len(demo_list) - 1) with gr.Row(): for i in range(len(demo_list)): gr.Image(show_label = False, show_download_button = False, value='assets/' + demo_list[i]) with gr.Row(): gr.Markdown( """

Hints

1. Choose trajectory mode "ori" to see whether the prompt works on the pre-trained model.

2. Adjust the prompt or random seed to get a qualified video.

3. Choose trajectory mode "demo" to see whether FreeTraj works or not.

4. Choose trajectory mode "diy" to plan new trajectory. It may fail in some extreme cases.

""" ) submit_btn.click(fn=infer, inputs=[prompt_in, target_indices, ddim_edit, seed, ddim_steps, unconditional_guidance_scale, video_fps, save_fps, height_ratio, width_ratio, radio_mode, dropdown_diy, *frame_indices, *h_positions, *w_positions], outputs=[video_result, video_result_bbox], api_name="freetraj") demo.queue(max_size=8).launch(show_api=True)