File size: 17,673 Bytes
b152010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import gc
import hashlib
import os
import queue
import threading
import json
import shlex
import sys
import subprocess
import librosa
import numpy as np
import soundfile as sf
import torch
from tqdm import tqdm

try:
    from .utils import (
        remove_directory_contents,
        create_directories,
    )
except:  # noqa
    from utils import (
        remove_directory_contents,
        create_directories,
    )
from .logging_setup import logger

try:
    import onnxruntime as ort
except Exception as error:
    logger.error(str(error))
# import warnings
# warnings.filterwarnings("ignore")

stem_naming = {
    "Vocals": "Instrumental",
    "Other": "Instruments",
    "Instrumental": "Vocals",
    "Drums": "Drumless",
    "Bass": "Bassless",
}


class MDXModel:
    def __init__(
        self,
        device,
        dim_f,
        dim_t,
        n_fft,
        hop=1024,
        stem_name=None,
        compensation=1.000,
    ):
        self.dim_f = dim_f
        self.dim_t = dim_t
        self.dim_c = 4
        self.n_fft = n_fft
        self.hop = hop
        self.stem_name = stem_name
        self.compensation = compensation

        self.n_bins = self.n_fft // 2 + 1
        self.chunk_size = hop * (self.dim_t - 1)
        self.window = torch.hann_window(
            window_length=self.n_fft, periodic=True
        ).to(device)

        out_c = self.dim_c

        self.freq_pad = torch.zeros(
            [1, out_c, self.n_bins - self.dim_f, self.dim_t]
        ).to(device)

    def stft(self, x):
        x = x.reshape([-1, self.chunk_size])
        x = torch.stft(
            x,
            n_fft=self.n_fft,
            hop_length=self.hop,
            window=self.window,
            center=True,
            return_complex=True,
        )
        x = torch.view_as_real(x)
        x = x.permute([0, 3, 1, 2])
        x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
            [-1, 4, self.n_bins, self.dim_t]
        )
        return x[:, :, : self.dim_f]

    def istft(self, x, freq_pad=None):
        freq_pad = (
            self.freq_pad.repeat([x.shape[0], 1, 1, 1])
            if freq_pad is None
            else freq_pad
        )
        x = torch.cat([x, freq_pad], -2)
        # c = 4*2 if self.target_name=='*' else 2
        x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
            [-1, 2, self.n_bins, self.dim_t]
        )
        x = x.permute([0, 2, 3, 1])
        x = x.contiguous()
        x = torch.view_as_complex(x)
        x = torch.istft(
            x,
            n_fft=self.n_fft,
            hop_length=self.hop,
            window=self.window,
            center=True,
        )
        return x.reshape([-1, 2, self.chunk_size])


class MDX:
    DEFAULT_SR = 44100
    # Unit: seconds
    DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
    DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR

    def __init__(
        self, model_path: str, params: MDXModel, processor=0
    ):
        # Set the device and the provider (CPU or CUDA)
        self.device = (
            torch.device(f"cuda:{processor}")
            if processor >= 0
            else torch.device("cpu")
        )
        self.provider = (
            ["CUDAExecutionProvider"]
            if processor >= 0
            else ["CPUExecutionProvider"]
        )

        self.model = params

        # Load the ONNX model using ONNX Runtime
        self.ort = ort.InferenceSession(model_path, providers=self.provider)
        # Preload the model for faster performance
        self.ort.run(
            None,
            {"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()},
        )
        self.process = lambda spec: self.ort.run(
            None, {"input": spec.cpu().numpy()}
        )[0]

        self.prog = None

    @staticmethod
    def get_hash(model_path):
        try:
            with open(model_path, "rb") as f:
                f.seek(-10000 * 1024, 2)
                model_hash = hashlib.md5(f.read()).hexdigest()
        except: # noqa
            model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()

        return model_hash

    @staticmethod
    def segment(
        wave,
        combine=True,
        chunk_size=DEFAULT_CHUNK_SIZE,
        margin_size=DEFAULT_MARGIN_SIZE,
    ):
        """
        Segment or join segmented wave array

        Args:
            wave: (np.array) Wave array to be segmented or joined
            combine: (bool) If True, combines segmented wave array.
                If False, segments wave array.
            chunk_size: (int) Size of each segment (in samples)
            margin_size: (int) Size of margin between segments (in samples)

        Returns:
            numpy array: Segmented or joined wave array
        """

        if combine:
            # Initializing as None instead of [] for later numpy array concatenation
            processed_wave = None
            for segment_count, segment in enumerate(wave):
                start = 0 if segment_count == 0 else margin_size
                end = None if segment_count == len(wave) - 1 else -margin_size
                if margin_size == 0:
                    end = None
                if processed_wave is None:  # Create array for first segment
                    processed_wave = segment[:, start:end]
                else:  # Concatenate to existing array for subsequent segments
                    processed_wave = np.concatenate(
                        (processed_wave, segment[:, start:end]), axis=-1
                    )

        else:
            processed_wave = []
            sample_count = wave.shape[-1]

            if chunk_size <= 0 or chunk_size > sample_count:
                chunk_size = sample_count

            if margin_size > chunk_size:
                margin_size = chunk_size

            for segment_count, skip in enumerate(
                range(0, sample_count, chunk_size)
            ):
                margin = 0 if segment_count == 0 else margin_size
                end = min(skip + chunk_size + margin_size, sample_count)
                start = skip - margin

                cut = wave[:, start:end].copy()
                processed_wave.append(cut)

                if end == sample_count:
                    break

        return processed_wave

    def pad_wave(self, wave):
        """
        Pad the wave array to match the required chunk size

        Args:
            wave: (np.array) Wave array to be padded

        Returns:
            tuple: (padded_wave, pad, trim)
                - padded_wave: Padded wave array
                - pad: Number of samples that were padded
                - trim: Number of samples that were trimmed
        """
        n_sample = wave.shape[1]
        trim = self.model.n_fft // 2
        gen_size = self.model.chunk_size - 2 * trim
        pad = gen_size - n_sample % gen_size

        # Padded wave
        wave_p = np.concatenate(
            (
                np.zeros((2, trim)),
                wave,
                np.zeros((2, pad)),
                np.zeros((2, trim)),
            ),
            1,
        )

        mix_waves = []
        for i in range(0, n_sample + pad, gen_size):
            waves = np.array(wave_p[:, i:i + self.model.chunk_size])
            mix_waves.append(waves)

        mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(
            self.device
        )

        return mix_waves, pad, trim

    def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
        """
        Process each wave segment in a multi-threaded environment

        Args:
            mix_waves: (torch.Tensor) Wave segments to be processed
            trim: (int) Number of samples trimmed during padding
            pad: (int) Number of samples padded during padding
            q: (queue.Queue) Queue to hold the processed wave segments
            _id: (int) Identifier of the processed wave segment

        Returns:
            numpy array: Processed wave segment
        """
        mix_waves = mix_waves.split(1)
        with torch.no_grad():
            pw = []
            for mix_wave in mix_waves:
                self.prog.update()
                spec = self.model.stft(mix_wave)
                processed_spec = torch.tensor(self.process(spec))
                processed_wav = self.model.istft(
                    processed_spec.to(self.device)
                )
                processed_wav = (
                    processed_wav[:, :, trim:-trim]
                    .transpose(0, 1)
                    .reshape(2, -1)
                    .cpu()
                    .numpy()
                )
                pw.append(processed_wav)
        processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
        q.put({_id: processed_signal})
        return processed_signal

    def process_wave(self, wave: np.array, mt_threads=1):
        """
        Process the wave array in a multi-threaded environment

        Args:
            wave: (np.array) Wave array to be processed
            mt_threads: (int) Number of threads to be used for processing

        Returns:
            numpy array: Processed wave array
        """
        self.prog = tqdm(total=0)
        chunk = wave.shape[-1] // mt_threads
        waves = self.segment(wave, False, chunk)

        # Create a queue to hold the processed wave segments
        q = queue.Queue()
        threads = []
        for c, batch in enumerate(waves):
            mix_waves, pad, trim = self.pad_wave(batch)
            self.prog.total = len(mix_waves) * mt_threads
            thread = threading.Thread(
                target=self._process_wave, args=(mix_waves, trim, pad, q, c)
            )
            thread.start()
            threads.append(thread)
        for thread in threads:
            thread.join()
        self.prog.close()

        processed_batches = []
        while not q.empty():
            processed_batches.append(q.get())
        processed_batches = [
            list(wave.values())[0]
            for wave in sorted(
                processed_batches, key=lambda d: list(d.keys())[0]
            )
        ]
        assert len(processed_batches) == len(
            waves
        ), "Incomplete processed batches, please reduce batch size!"
        return self.segment(processed_batches, True, chunk)


def run_mdx(
    model_params,
    output_dir,
    model_path,
    filename,
    exclude_main=False,
    exclude_inversion=False,
    suffix=None,
    invert_suffix=None,
    denoise=False,
    keep_orig=True,
    m_threads=2,
    device_base="cuda",
):
    if device_base == "cuda":
        device = torch.device("cuda:0")
        processor_num = 0
        device_properties = torch.cuda.get_device_properties(device)
        vram_gb = device_properties.total_memory / 1024**3
        m_threads = 1 if vram_gb < 8 else 2
    else:
        device = torch.device("cpu")
        processor_num = -1
        m_threads = 1

    model_hash = MDX.get_hash(model_path)
    mp = model_params.get(model_hash)
    model = MDXModel(
        device,
        dim_f=mp["mdx_dim_f_set"],
        dim_t=2 ** mp["mdx_dim_t_set"],
        n_fft=mp["mdx_n_fft_scale_set"],
        stem_name=mp["primary_stem"],
        compensation=mp["compensate"],
    )

    mdx_sess = MDX(model_path, model, processor=processor_num)
    wave, sr = librosa.load(filename, mono=False, sr=44100)
    # normalizing input wave gives better output
    peak = max(np.max(wave), abs(np.min(wave)))
    wave /= peak
    if denoise:
        wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (
            mdx_sess.process_wave(wave, m_threads)
        )
        wave_processed *= 0.5
    else:
        wave_processed = mdx_sess.process_wave(wave, m_threads)
    # return to previous peak
    wave_processed *= peak
    stem_name = model.stem_name if suffix is None else suffix

    main_filepath = None
    if not exclude_main:
        main_filepath = os.path.join(
            output_dir,
            f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
        )
        sf.write(main_filepath, wave_processed.T, sr)

    invert_filepath = None
    if not exclude_inversion:
        diff_stem_name = (
            stem_naming.get(stem_name)
            if invert_suffix is None
            else invert_suffix
        )
        stem_name = (
            f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
        )
        invert_filepath = os.path.join(
            output_dir,
            f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
        )
        sf.write(
            invert_filepath,
            (-wave_processed.T * model.compensation) + wave.T,
            sr,
        )

    if not keep_orig:
        os.remove(filename)

    del mdx_sess, wave_processed, wave
    gc.collect()
    torch.cuda.empty_cache()
    return main_filepath, invert_filepath


MDX_DOWNLOAD_LINK = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/"
UVR_MODELS = [
    "UVR-MDX-NET-Voc_FT.onnx",
    "UVR_MDXNET_KARA_2.onnx",
    "Reverb_HQ_By_FoxJoy.onnx",
    "UVR-MDX-NET-Inst_HQ_4.onnx",
]
BASE_DIR = "."  # os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
mdxnet_models_dir = os.path.join(BASE_DIR, "mdx_models")
output_dir = os.path.join(BASE_DIR, "clean_song_output")


def convert_to_stereo_and_wav(audio_path):
    wave, sr = librosa.load(audio_path, mono=False, sr=44100)

    # check if mono
    if type(wave[0]) != np.ndarray or audio_path[-4:].lower() != ".wav": # noqa
        stereo_path = f"{os.path.splitext(audio_path)[0]}_stereo.wav"
        stereo_path = os.path.join(output_dir, stereo_path)

        command = shlex.split(
            f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"'
        )
        sub_params = {
            "stdout": subprocess.PIPE,
            "stderr": subprocess.PIPE,
            "creationflags": subprocess.CREATE_NO_WINDOW
            if sys.platform == "win32"
            else 0,
        }
        process_wav = subprocess.Popen(command, **sub_params)
        output, errors = process_wav.communicate()
        if process_wav.returncode != 0 or not os.path.exists(stereo_path):
            raise Exception("Error processing audio to stereo wav")

        return stereo_path
    else:
        return audio_path


def process_uvr_task(
    orig_song_path: str = "aud_test.mp3",
    main_vocals: bool = False,
    dereverb: bool = True,
    song_id: str = "mdx",  # folder output name
    only_voiceless: bool = False,
    remove_files_output_dir: bool = False,
):
    if os.environ.get("SONITR_DEVICE") == "cpu":
        device_base = "cpu"
    else:
        device_base = "cuda" if torch.cuda.is_available() else "cpu"

    if remove_files_output_dir:
        remove_directory_contents(output_dir)

    with open(os.path.join(mdxnet_models_dir, "data.json")) as infile:
        mdx_model_params = json.load(infile)

    song_output_dir = os.path.join(output_dir, song_id)
    create_directories(song_output_dir)
    orig_song_path = convert_to_stereo_and_wav(orig_song_path)

    logger.debug(f"onnxruntime device >> {ort.get_device()}")

    if only_voiceless:
        logger.info("Voiceless Track Separation...")
        return run_mdx(
            mdx_model_params,
            song_output_dir,
            os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Inst_HQ_4.onnx"),
            orig_song_path,
            suffix="Voiceless",
            denoise=False,
            keep_orig=True,
            exclude_inversion=True,
            device_base=device_base,
        )

    logger.info("Vocal Track Isolation and Voiceless Track Separation...")
    vocals_path, instrumentals_path = run_mdx(
        mdx_model_params,
        song_output_dir,
        os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Voc_FT.onnx"),
        orig_song_path,
        denoise=True,
        keep_orig=True,
        device_base=device_base,
    )

    if main_vocals:
        logger.info("Main Voice Separation from Supporting Vocals...")
        backup_vocals_path, main_vocals_path = run_mdx(
            mdx_model_params,
            song_output_dir,
            os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"),
            vocals_path,
            suffix="Backup",
            invert_suffix="Main",
            denoise=True,
            device_base=device_base,
        )
    else:
        backup_vocals_path, main_vocals_path = None, vocals_path

    if dereverb:
        logger.info("Vocal Clarity Enhancement through De-Reverberation...")
        _, vocals_dereverb_path = run_mdx(
            mdx_model_params,
            song_output_dir,
            os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"),
            main_vocals_path,
            invert_suffix="DeReverb",
            exclude_main=True,
            denoise=True,
            device_base=device_base,
        )
    else:
        vocals_dereverb_path = main_vocals_path

    return (
        vocals_path,
        instrumentals_path,
        backup_vocals_path,
        main_vocals_path,
        vocals_dereverb_path,
    )


if __name__ == "__main__":
    from utils import download_manager

    for id_model in UVR_MODELS:
        download_manager(
            os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir
        )
    (
        vocals_path_,
        instrumentals_path_,
        backup_vocals_path_,
        main_vocals_path_,
        vocals_dereverb_path_,
    ) = process_uvr_task(
        orig_song_path="aud.mp3",
        main_vocals=True,
        dereverb=True,
        song_id="mdx",
        remove_files_output_dir=True,
    )