import numpy as np from numba import njit import math import random import pickle import gradio as gr def text_to_arr(text: str): return np.array([ord(x) for x in text.lower()]) @njit def longest_common_substring(s1, s2): current_match_start = -1 current_match_end = -1 best_match_start = current_match_start best_match_end = current_match_end min_len = min(len(s1), len(s2)) for i in range(min_len): if s1[i] == s2[i]: current_match_start = current_match_end = i j = 0 while s1[i+j] == s2[i+j] and i+j < min_len: j += 1 current_match_end = current_match_start + j if current_match_end - current_match_start > best_match_end - best_match_start: best_match_start = current_match_start best_match_end = current_match_end return s1[best_match_start:best_match_end] def not_found_in(q, data): for l in data: count = 0 lq = len(q)-1 for v in l: if v == q[count]: count += 1 else: count = 0 if count == lq: return False return True class Layer: def __init__(self, mem_len: int = 100, max_size: int = 6): self.mem_len = mem_len self.common_strings = [] self.previously_seen = [] self.max_size = max_size+1 def __call__(self, input_arr, training: bool = True): o = [] li = len(input_arr) for i in range(li): for y, common_substring in enumerate(self.common_strings): if (i+common_substring.shape[0]) <= li and (input_arr[i:i+common_substring.shape[0]] == common_substring).all(): o.append(y) if training: current_max_len = 0 n = None for i, line in enumerate(self.previously_seen): t = longest_common_substring(input_arr, line) l = len(t) if l > current_max_len and l < self.max_size: current_max_len = l n = i result = t if self.previously_seen != []: if n is not None and len(result) > 1: self.previously_seen.pop(n) if not_found_in(result, self.common_strings): self.common_strings.append(result) self.previously_seen = self.previously_seen[-self.mem_len:] self.previously_seen.append(input_arr) return o with open("l1_large.pckl", "rb") as f: layer = pickle.load(f) with open("l2_large.pckl", "rb") as f: layer2 = pickle.load(f) with open("w1_large.pckl", "rb") as f: w = pickle.load(f) with open("w2_large.pckl", "rb") as f: w2 = pickle.load(f) def generate(msg): if len(msg) < 4: return threeletterai.getresp(msg) processed = layer(text_to_arr(msg), training=False) processed = np.array(processed) processed2 = layer2(processed, training=False) # print(processed) # print(processed2) o = np.zeros(40000, dtype=np.int16) for a in processed: if a in w: o[w[a]] += 1 for a in processed2: if a in w2: o[w2[a]] += 1 return lines[np.argmax(o)] app = gr.Interface(fn=generate, inputs="text", outputs="text") app.launch()