import gradio as gr import pandas as pd # Define benchmark data benchmark_data = { 'Model': [ 'IlyaGusev/saiga_llama3_8b', # LLaMA3 'Vikhrmodels/Vikhr-Nemo-12B', # Vikhr 'TinyLLaMA/TinyLlama-1.1B', # TinyLLaMA 'mistralai/Mistral-Nemo-Instruct-2407', # Mistral 'Vikhrmodels/Vikhr-Qwen-2.5-0.5b-Instruct' # Qwen ], 'Creativity Score': [ 37.75, # LLaMA3 46.00, # Vikhr 6.50, # TinyLLaMA 23.75, # Mistral 8.25 # Qwen ], 'Diversity Score': [ 49.50, # LLaMA3 52.00, # Vikhr 14.50, # TinyLLaMA 38.50, # Mistral 15.55 # Qwen ], 'Relevance Score': [ 79.25, # LLaMA3 87.50, # Vikhr 18.50, # TinyLLaMA 76.75, # Mistral 34.25 # Qwen ], 'Average Score': [ 55.50, # LLaMA3 61.83, # Vikhr 13.17, # TinyLLaMA 46.33, # Mistral 19.35 # Qwen ] } def display_results(): df = pd.DataFrame(benchmark_data) return df # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# Russian Language Model Benchmark Results") # Add dataframe output output = gr.DataFrame( headers=list(benchmark_data.keys()), interactive=False ) refresh_btn = gr.Button("Show Results") refresh_btn.click(fn=display_results, outputs=output) if __name__ == "__main__": demo.launch()