Spaces:
Runtime error
Runtime error
Mrahsanahmad
commited on
Commit
•
369d822
1
Parent(s):
f822c09
try subplotting
Browse files- app.py +169 -4
- app.py.orig +122 -0
app.py
CHANGED
@@ -1,7 +1,172 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import jax
|
5 |
+
import jax.numpy as jnp
|
6 |
+
from flax.jax_utils import replicate
|
7 |
+
from flax.training.common_utils import shard
|
8 |
+
from PIL import Image
|
9 |
+
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
|
10 |
+
from diffusers import (
|
11 |
+
FlaxStableDiffusionControlNetPipeline,
|
12 |
+
FlaxControlNetModel,
|
13 |
+
)
|
14 |
+
from transformers import pipeline
|
15 |
|
16 |
+
import colorsys
|
|
|
17 |
|
18 |
+
sam_checkpoint = "sam_vit_h_4b8939.pth"
|
19 |
+
model_type = "vit_h"
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
|
22 |
+
|
23 |
+
#sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
24 |
+
#sam.to(device=device)
|
25 |
+
#predictor = SamPredictor(sam)
|
26 |
+
#mask_generator = SamAutomaticMaskGenerator(sam)
|
27 |
+
|
28 |
+
generator = pipeline(model="facebook/sam-vit-base", task="mask-generation", points_per_batch=256)
|
29 |
+
#image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
|
30 |
+
|
31 |
+
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
|
32 |
+
"SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32
|
33 |
+
)
|
34 |
+
|
35 |
+
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
|
36 |
+
"runwayml/stable-diffusion-v1-5",
|
37 |
+
controlnet=controlnet,
|
38 |
+
revision="flax",
|
39 |
+
dtype=jnp.bfloat16,
|
40 |
+
)
|
41 |
+
|
42 |
+
params["controlnet"] = controlnet_params
|
43 |
+
p_params = replicate(params)
|
44 |
+
|
45 |
+
|
46 |
+
with gr.Blocks() as demo:
|
47 |
+
gr.Markdown("# Ahsans version WildSynth: Synthetic Wildlife Data Generation")
|
48 |
+
gr.Markdown(
|
49 |
+
"""
|
50 |
+
## Work in Progress
|
51 |
+
### About
|
52 |
+
We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images.
|
53 |
+
|
54 |
+
For the training data creation we used the [Wildlife Animals Images](https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images) dataset.
|
55 |
+
We created segmentation masks with the help of [Grounded SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) where we used the animals names
|
56 |
+
as input prompts for detection and more accurate segmentation.
|
57 |
+
|
58 |
+
### How To Use
|
59 |
+
|
60 |
+
"""
|
61 |
+
)
|
62 |
+
with gr.Row():
|
63 |
+
input_img = gr.Image(label="Input", type="pil")
|
64 |
+
mask_img = gr.Image(label="Mask", interactive=False)
|
65 |
+
output_img = gr.Image(label="Output", interactive=False)
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
prompt_text = gr.Textbox(lines=1, label="Prompt")
|
69 |
+
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt")
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
submit = gr.Button("Submit")
|
73 |
+
clear = gr.Button("Clear")
|
74 |
+
|
75 |
+
def generate_mask(image):
|
76 |
+
outputs = generator(image, points_per_batch=256)
|
77 |
+
mask_images = []
|
78 |
+
for mask in outputs["masks"]:
|
79 |
+
color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0)
|
80 |
+
h, w = mask.shape[-2:]
|
81 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
82 |
+
mask_images.append(mask_image)
|
83 |
+
|
84 |
+
return np.stack(mask_images)
|
85 |
+
|
86 |
+
def infer(
|
87 |
+
image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
|
88 |
+
):
|
89 |
+
try:
|
90 |
+
rng = jax.random.PRNGKey(int(seed))
|
91 |
+
num_inference_steps = int(num_inference_steps)
|
92 |
+
image = Image.fromarray(image, mode="RGB")
|
93 |
+
num_samples = max(jax.device_count(), int(num_samples))
|
94 |
+
p_rng = jax.random.split(rng, jax.device_count())
|
95 |
+
|
96 |
+
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
|
97 |
+
negative_prompt_ids = pipe.prepare_text_inputs(
|
98 |
+
[negative_prompts] * num_samples
|
99 |
+
)
|
100 |
+
processed_image = pipe.prepare_image_inputs([image] * num_samples)
|
101 |
+
|
102 |
+
prompt_ids = shard(prompt_ids)
|
103 |
+
negative_prompt_ids = shard(negative_prompt_ids)
|
104 |
+
processed_image = shard(processed_image)
|
105 |
+
|
106 |
+
output = pipe(
|
107 |
+
prompt_ids=prompt_ids,
|
108 |
+
image=processed_image,
|
109 |
+
params=p_params,
|
110 |
+
prng_seed=p_rng,
|
111 |
+
num_inference_steps=num_inference_steps,
|
112 |
+
neg_prompt_ids=negative_prompt_ids,
|
113 |
+
jit=True,
|
114 |
+
).images
|
115 |
+
|
116 |
+
del negative_prompt_ids
|
117 |
+
del processed_image
|
118 |
+
del prompt_ids
|
119 |
+
|
120 |
+
output = output.reshape((num_samples,) + output.shape[-3:])
|
121 |
+
final_image = [np.array(x * 255, dtype=np.uint8) for x in output]
|
122 |
+
print(output.shape)
|
123 |
+
del output
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
print("Error: " + str(e))
|
127 |
+
final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples
|
128 |
+
finally:
|
129 |
+
gc.collect()
|
130 |
+
return final_image
|
131 |
+
|
132 |
+
def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg):
|
133 |
+
img = None
|
134 |
+
mask = None
|
135 |
+
seg = None
|
136 |
+
out = None
|
137 |
+
prompt = ""
|
138 |
+
neg_prompt = ""
|
139 |
+
bg = False
|
140 |
+
return img, mask, seg, out, prompt, neg_prompt, bg
|
141 |
+
|
142 |
+
input_img.change(
|
143 |
+
generate_mask,
|
144 |
+
inputs=[input_img],
|
145 |
+
outputs=[mask_img],
|
146 |
+
)
|
147 |
+
submit.click(
|
148 |
+
infer,
|
149 |
+
inputs=[mask_img, prompt_text, negative_prompt_text],
|
150 |
+
outputs=[output_img],
|
151 |
+
)
|
152 |
+
clear.click(
|
153 |
+
_clear,
|
154 |
+
inputs=[
|
155 |
+
input_img,
|
156 |
+
mask_img,
|
157 |
+
output_img,
|
158 |
+
prompt_text,
|
159 |
+
negative_prompt_text,
|
160 |
+
],
|
161 |
+
outputs=[
|
162 |
+
input_img,
|
163 |
+
mask_img,
|
164 |
+
output_img,
|
165 |
+
prompt_text,
|
166 |
+
negative_prompt_text,
|
167 |
+
],
|
168 |
+
)
|
169 |
+
|
170 |
+
if __name__ == "__main__":
|
171 |
+
demo.queue()
|
172 |
+
demo.launch()
|
app.py.orig
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from transformers import SamModel, SamProcessor
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
def show_mask(mask, ax, random_color=False):
|
11 |
+
if random_color:
|
12 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
13 |
+
else:
|
14 |
+
color = np.array([30/255, 144/255, 255/255, 0.6])
|
15 |
+
h, w = mask.shape[-2:]
|
16 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
17 |
+
ax.imshow(mask_image)
|
18 |
+
|
19 |
+
|
20 |
+
def show_box(box, ax):
|
21 |
+
x0, y0 = box[0], box[1]
|
22 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
23 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
24 |
+
|
25 |
+
def show_boxes_on_image(raw_image, boxes):
|
26 |
+
plt.figure(figsize=(10,10))
|
27 |
+
plt.imshow(raw_image)
|
28 |
+
for box in boxes:
|
29 |
+
show_box(box, plt.gca())
|
30 |
+
plt.axis('on')
|
31 |
+
plt.show()
|
32 |
+
|
33 |
+
|
34 |
+
def show_points_on_image(raw_image, input_points, input_labels=None):
|
35 |
+
plt.figure(figsize=(10,10))
|
36 |
+
plt.imshow(raw_image)
|
37 |
+
input_points = np.array(input_points)
|
38 |
+
if input_labels is None:
|
39 |
+
labels = np.ones_like(input_points[:, 0])
|
40 |
+
else:
|
41 |
+
labels = np.array(input_labels)
|
42 |
+
show_points(input_points, labels, plt.gca())
|
43 |
+
plt.axis('on')
|
44 |
+
plt.show()
|
45 |
+
|
46 |
+
def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None):
|
47 |
+
plt.figure(figsize=(10,10))
|
48 |
+
plt.imshow(raw_image)
|
49 |
+
input_points = np.array(input_points)
|
50 |
+
if input_labels is None:
|
51 |
+
labels = np.ones_like(input_points[:, 0])
|
52 |
+
else:
|
53 |
+
labels = np.array(input_labels)
|
54 |
+
show_points(input_points, labels, plt.gca())
|
55 |
+
for box in boxes:
|
56 |
+
show_box(box, plt.gca())
|
57 |
+
plt.axis('on')
|
58 |
+
plt.show()
|
59 |
+
|
60 |
+
|
61 |
+
def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None):
|
62 |
+
plt.figure(figsize=(10,10))
|
63 |
+
plt.imshow(raw_image)
|
64 |
+
input_points = np.array(input_points)
|
65 |
+
if input_labels is None:
|
66 |
+
labels = np.ones_like(input_points[:, 0])
|
67 |
+
else:
|
68 |
+
labels = np.array(input_labels)
|
69 |
+
show_points(input_points, labels, plt.gca())
|
70 |
+
for box in boxes:
|
71 |
+
show_box(box, plt.gca())
|
72 |
+
plt.axis('on')
|
73 |
+
plt.show()
|
74 |
+
|
75 |
+
|
76 |
+
def show_points(coords, labels, ax, marker_size=375):
|
77 |
+
pos_points = coords[labels==1]
|
78 |
+
neg_points = coords[labels==0]
|
79 |
+
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
80 |
+
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
81 |
+
|
82 |
+
|
83 |
+
def apply_masks_on_image(raw_image, masks, scores):
|
84 |
+
if len(masks.shape) == 4:
|
85 |
+
masks = masks.squeeze()
|
86 |
+
if scores.shape[0] == 1:
|
87 |
+
scores = scores.squeeze()
|
88 |
+
|
89 |
+
nb_predictions = scores.shape[-1]
|
90 |
+
fig, axes = plt.subplots(1, nb_predictions, figsize=(15, 15))
|
91 |
+
|
92 |
+
for i, (mask, score) in enumerate(zip(masks, scores)):
|
93 |
+
mask = mask.cpu().detach()
|
94 |
+
axes[i].imshow(np.array(raw_image))
|
95 |
+
show_mask(mask, axes[i])
|
96 |
+
axes[i].title.set_text(f"Mask {i+1}, Score: {score.item():.3f}")
|
97 |
+
axes[i].axis("off")
|
98 |
+
plt.show()
|
99 |
+
|
100 |
+
def segment(imageUrl):
|
101 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
102 |
+
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
|
103 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
104 |
+
|
105 |
+
img_url = imageUrl#"https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
|
106 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
107 |
+
input_points = [[[450, 600]]] # 2D location of a window in the image
|
108 |
+
|
109 |
+
inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(device)
|
110 |
+
outputs = model(**inputs)
|
111 |
+
|
112 |
+
masks = processor.image_processor.post_process_masks(
|
113 |
+
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
|
114 |
+
)
|
115 |
+
scores = outputs.iou_scores
|
116 |
+
return {"Masks": masks, "Scores": scores}
|
117 |
+
|
118 |
+
gr.Interface(fn=predict,
|
119 |
+
inputs=gr.Image(type="pil"),
|
120 |
+
outputs=[{"type":"dataframe","name":"Categories Scores"},
|
121 |
+
{"type":"dataframe","name":"Categories Labels"}],
|
122 |
+
).launch()
|