Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
with open("class_names.txt", "r") as f: | |
class_names = [food_name.strip() for food_name in f.readlines()] | |
### 2. Model and transforms perparation ### | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101) | |
# Load save weights | |
effnetb2.load_state_dict( | |
torch.load( | |
f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth", | |
map_location=torch.device("cpu") # load the model to the CPU | |
) | |
) | |
### 3. Predict function ### | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index | |
# Put model into eval mode, make prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# Pass transformed image through the model and turn the prediction logit into probability | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article | |
title = "FoodVision BIG ππ" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)." | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#11-turning-our-foodvision-big-model-into-a-deployable-app)" | |
# Create example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # maps inputs to output | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False) | |