### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names with open("class_names.txt", "r") as f: class_names = [food_name.strip() for food_name in f.readlines()] ### 2. Model and transforms perparation ### effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101) # Load save weights effnetb2.load_state_dict( torch.load( f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth", map_location=torch.device("cpu") # load the model to the CPU ) ) ### 3. Predict function ### def predict(img) -> Tuple[Dict, float]: # Start a timer start_time = timer() # Transform the input image for use with EffNetB2 img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index # Put model into eval mode, make prediction effnetb2.eval() with torch.inference_mode(): # Pass transformed image through the model and turn the prediction logit into probability pred_probs = torch.softmax(effnetb2(img), dim=1) # Create a prediction label and prediction probability dictionary pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate pred time end_time = timer() pred_time = round(end_time - start_time, 4) # Return pred dict and pred time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article title = "FoodVision BIG 🍔👁" description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)." article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#11-turning-our-foodvision-big-model-into-a-deployable-app)" # Create example list example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, # maps inputs to output inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch(debug=False)