Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
class_names = ['pizza', 'steak', 'sushi'] | |
### 2. MOdel and transforms perparation ### | |
effnetb2, effnetb2_transforms = create_effnetb2_model( | |
num_classes=3) | |
# Load save weights | |
effnetb2.load_state_dict( | |
torch.load( | |
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth", | |
map_location=torch.device("cpu") # load the model to the CPU | |
) | |
) | |
### 3. Predict function ### | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index | |
# Put model into eval mode, make prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# Pass transformed image through the model and turn the prediction logit into probability | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article | |
title = "FoodVision Mini ππ₯©π£" | |
description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi" | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)" | |
# Create example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # maps inputs to output | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False) # Don't need share=True in HuggingFace | |