Spaces:
Running
Running
File size: 50,087 Bytes
2c0c3ee 1329302 4713c08 2c0c3ee 2094932 2c0c3ee c647a0c 2c0c3ee 2094932 2c0c3ee 2094932 2c0c3ee 15d8a95 e799097 4e806c6 48853ce 5b60329 312b056 15d8a95 cc23ed9 1ac5e91 7044d1d f1a67c9 cc23ed9 4208f4a 7044d1d 8bf2b61 90075ae 2c0c3ee 2094932 f385f66 2094932 f385f66 75af7be 717529b 75af7be 1329302 2c0c3ee 1329302 4713c08 163393f eae0f4b 03bbfb7 eae0f4b be87652 cc34b57 2c0c3ee 1329302 2c0c3ee 1329302 4713c08 163393f 0135227 22439ab 1329302 163393f cc34b57 6c39dd6 cc34b57 eae0f4b 1329302 2c0c3ee eae0f4b 4713c08 1329302 312b056 1329302 4713c08 1329302 eae0f4b 2c0c3ee 4713c08 2c0c3ee 15d8a95 4713c08 2c0c3ee 15d8a95 4713c08 1329302 4713c08 2c0c3ee 4713c08 1329302 4713c08 1329302 eae0f4b 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee fcbf3e4 1329302 4713c08 2c0c3ee 4713c08 1329302 2c0c3ee 1329302 dab3604 2bbbebc dab3604 eae0f4b dab3604 3c2ff58 802a7a0 3c2ff58 802a7a0 2bbbebc e3f7150 163393f dab3604 4713c08 2bbbebc 4713c08 eae0f4b 2c0c3ee 4713c08 2c0c3ee 2df260c 2c0c3ee 4713c08 2c0c3ee 2df260c 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 4713c08 2c0c3ee 2df260c 7508147 2c0c3ee 4713c08 2c0c3ee 4713c08 dab3604 4713c08 163393f 1329302 eae0f4b 2c0c3ee 1329302 163393f 0b2b094 8a64082 163393f e43db7d b6fa50a e43db7d 2b53a5b e43db7d 8990830 e43db7d 5b60329 1329302 163393f 1329302 b1505ef 5b60329 a31528c 163393f 9e8aff0 163393f 0b2b094 163393f 9a9892a 163393f 830b46e 163393f fd6e941 163393f fd6e941 163393f fd6e941 163393f fd6e941 163393f cce21a1 fd6e941 163393f fd6e941 163393f fd6e941 163393f 830b46e 163393f 5752e3b 163393f 5b4abea 163393f 9a9892a 163393f 7fecbe2 163393f 0b2b094 163393f 7fecbe2 fd6e941 163393f fd6e941 163393f fd6e941 163393f fd6e941 163393f fd6e941 163393f cce21a1 fd6e941 163393f fd6e941 163393f fd6e941 163393f fd6e941 7fecbe2 9a9892a 7fecbe2 830b46e a31528c 163393f a31528c 163393f a31528c 163393f a31528c 163393f 5b60329 a31528c 5b60329 a31528c 5b60329 a31528c 5b60329 34b0b01 cce21a1 5b60329 a31528c 5b60329 a31528c 5b60329 163393f 830b46e 163393f a31528c 163393f a31528c 5752e3b a31528c 163393f a31528c 163393f a31528c 163393f a31528c 163393f a31528c 163393f a31528c 163393f 5b4abea 496250b 9a9892a 1329302 163393f 0b2b094 1329302 163393f 1329302 163393f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import plotly.express as px
import random
import gc
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
credentials2 = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc_con = gspread.service_account_from_dict(credentials)
gc_con2 = gspread.service_account_from_dict(credentials2)
return gc_con, gc_con2
gcservice_account, gcservice_account2 = init_conn()
master_hold = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=853878325'
game_format = {'Win%': '{:.2%}'}
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
prop_table_options = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_3_POINTERS_MADE', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
all_sim_vars = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_3_POINTERS_MADE', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
pick6_sim_vars = ['Points', 'Rebounds', 'Assists', '3-Pointers Made', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds']
sim_all_hold = pd.DataFrame(columns=['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
def add_column(df):
return_df = df
return_df['2P'] = return_df["Minutes"] * return_df["FG2M"]
return_df['3P'] = return_df["Minutes"] * return_df["Threes"]
return_df['FT'] = return_df["Minutes"] * return_df["FTM"]
return_df['Points'] = (return_df["2P"] * 2) + (return_df["3P"] * 3) + return_df['FT']
return_df['Rebounds'] = return_df["Minutes"] * return_df["TRB"]
return_df['Assists'] = return_df["Minutes"] * return_df["AST"]
return_df['PRA'] = return_df['Points'] + return_df['Rebounds'] + return_df['Assists']
return_df['PR'] = return_df['Points'] + return_df['Rebounds']
return_df['PA'] = return_df['Points'] + return_df['Assists']
return_df['RA'] = return_df['Rebounds'] + return_df['Assists']
return_df['Steals'] = return_df["Minutes"] * return_df["STL"]
return_df['Blocks'] = return_df["Minutes"] * return_df["BLK"]
return_df['Turnovers'] = return_df["Minutes"] * return_df["TOV"]
return_df['Fantasy'] = (return_df["2P"] * 3) + (return_df["3P"] * 3.5) + return_df['FT'] + (return_df["Rebounds"] * 1.25) + (return_df["Assists"] * 1.5) + (return_df["Steals"] * 2) + (return_df["Blocks"] * 2) + (return_df["Turnovers"] * -.5)
export_df = return_df[['Player', 'Position', 'Team', 'Opp', 'Minutes', '2P', '3P', 'FT', 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy']]
return export_df
@st.cache_resource(ttl = 300)
def init_baselines():
try:
sh = gcservice_account.open_by_url(master_hold)
worksheet = sh.worksheet('Betting Model Clean')
raw_display = pd.DataFrame(worksheet.get_all_records())
except:
sh = gcservice_account2.open_by_url(master_hold)
worksheet = sh.worksheet('Betting Model Clean')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('#DIV/0!', np.nan, inplace=True)
raw_display['Win%'] = raw_display['Win%'].replace({'%': ''}, regex=True).astype(float) / 100
game_model = raw_display.dropna()
worksheet = sh.worksheet('DK_Build_Up')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
raw_display = raw_display.rename(columns={"Name": "Player"})
raw_baselines = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', 'PRA', 'PR', 'PA', 'RA']]
raw_baselines = raw_baselines[raw_baselines['Minutes'] > 0]
raw_baselines['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
'Trey Murphy III', 'Cam Thomas'], inplace=True)
player_stats = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers', 'Fantasy']]
player_stats = player_stats[player_stats['Minutes'] > 0]
player_stats['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
'Trey Murphy III', 'Cam Thomas'], inplace=True)
worksheet = sh.worksheet('Timestamp')
timestamp = worksheet.acell('A1').value
worksheet = sh.worksheet('Prop_Frame')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
raw_display = raw_display.rename(columns={"Name": "Player", "OddsType": "book", "PropType": "prop_type"})
prop_frame = raw_display.dropna(subset='Player')
worksheet = sh.worksheet('Pick6_ingest')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display.replace('', np.nan, inplace=True)
pick_frame = raw_display.dropna(subset='Player')
prop_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
'Trey Murphy III', 'Cam Thomas'], inplace=True)
pick_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
'Trey Murphy III', 'Cam Thomas'], inplace=True)
return game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
with tab1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
team_frame = game_model
if line_var1 == 'Percentage':
team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Win%']]
team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
if line_var1 == 'American':
team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Odds Line']]
team_frame = team_frame.set_index('Team')
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Team Model",
data=convert_df_to_csv(team_frame),
file_name='NBA_team_betting_export.csv',
mime='text/csv',
key='team_export',
)
with tab2:
st.info(t_stamp)
if st.button("Reset Data", key='reset2'):
st.cache_data.clear()
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var1')
elif split_var1 == 'All':
team_var1 = player_stats.Team.values.tolist()
player_stats = player_stats[player_stats['Team'].isin(team_var1)]
player_stats_disp = player_stats.set_index('Player')
player_stats_disp = player_stats_disp.sort_values(by='Fantasy', ascending=False)
st.dataframe(player_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Prop Model",
data=convert_df_to_csv(player_stats),
file_name='NBA_stats_export.csv',
mime='text/csv',
)
with tab3:
st.info(t_stamp)
if st.button("Reset Data", key='reset3'):
st.cache_data.clear()
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
if split_var5 == 'Specific Teams':
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var5')
elif split_var5 == 'All':
team_var5 = player_stats.Team.values.tolist()
book_split5 = st.radio("Would you like to view all books or specific ones?", ('All', 'Specific Books'), key='book_split5')
if book_split5 == 'Specific Books':
book_var5 = st.multiselect('Which books would you like to include in the tables?', options = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'], key='book_var5')
elif book_split5 == 'All':
book_var5 = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
prop_frame_disp = prop_frame[prop_frame['Team'].isin(team_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['book'].isin(book_var5)]
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
st.download_button(
label="Export Prop Trends Model",
data=convert_df_to_csv(prop_frame),
file_name='NBA_prop_trends_export.csv',
mime='text/csv',
)
with tab4:
st.info(t_stamp)
if st.button("Reset Data", key='reset4'):
st.cache_data.clear()
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
with col1:
player_check = st.selectbox('Select player to simulate props', options = player_stats['Player'].unique())
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['points', 'threes', 'rebounds', 'assists', 'blocks', 'steals',
'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
if prop_type_var == 'points':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 15.5, step = .5)
elif prop_type_var == 'threes':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'rebounds':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
elif prop_type_var == 'assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
elif prop_type_var == 'blocks':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'steals':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
elif prop_type_var == 'PRA':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 65.5, value = 20.5, step = .5)
elif prop_type_var == 'points+rebounds':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
elif prop_type_var == 'points+assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
elif prop_type_var == 'rebounds+assists':
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1500, max_value = 1500, value = -150, step = 1)
line_var = line_var + 1
if st.button('Simulate Prop'):
with col2:
with df_hold_container.container():
df = player_stats
total_sims = 5000
df.replace("", 0, inplace=True)
player_var = df.loc[df['Player'] == player_check]
player_var = player_var.reset_index()
if prop_type_var == 'points':
df['Median'] = df['Points']
elif prop_type_var == 'threes':
df['Median'] = df['3P']
elif prop_type_var == 'rebounds':
df['Median'] = df['Rebounds']
elif prop_type_var == 'assists':
df['Median'] = df['Assists']
elif prop_type_var == 'blocks':
df['Median'] = df['Blocks']
elif prop_type_var == 'steals':
df['Median'] = df['Steals']
elif prop_type_var == 'PRA':
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
elif prop_type_var == 'points+rebounds':
df['Median'] = df['Points'] + df['Rebounds']
elif prop_type_var == 'points+assists':
df['Median'] = df['Points'] + df['Assists']
elif prop_type_var == 'rebounds+assists':
df['Median'] = df['Assists'] + df['Rebounds']
flex_file = df
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
flex_file['STD'] = (flex_file['Median']/4)
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file
overall_file = flex_file
salary_file = flex_file
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
overall_file.astype('int').dtypes
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
if ou_var == 'Over':
players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
elif ou_var == 'Under':
players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
player_outcomes = player_outcomes.reset_index()
player_outcomes.columns = ['Instance', 'Outcome']
x1 = player_outcomes.Outcome.to_numpy()
print(x1)
hist_data = [x1]
group_labels = ['player outcomes']
fig = px.histogram(
player_outcomes, x='Outcome')
fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
with df_hold_container:
df_hold_container = st.empty()
format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
with info_hold_container:
st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
with plot_hold_container:
st.dataframe(player_outcomes, use_container_width = True)
plot_hold_container = st.empty()
st.plotly_chart(fig, use_container_width=True)
with tab5:
st.info(t_stamp)
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
if st.button("Reset Data/Load Data", key='reset6'):
st.cache_data.clear()
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 5])
with col2:
df_hold_container = st.empty()
info_hold_container = st.empty()
plot_hold_container = st.empty()
export_container = st.empty()
with col1:
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
if book_select_var == 'ALL':
book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
else:
book_selections = [book_select_var]
if game_select_var == 'Aggregate':
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df.rename(columns={"Full_name": "Player"}, inplace = True)
book_selections = ['Pick6']
st.download_button(
label="Download Prop Source",
data=convert_df_to_csv(prop_df),
file_name='Nba_prop_source.csv',
mime='text/csv',
key='prop_source',
)
if game_select_var == 'Aggregate':
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_3_POINTERS_MADE', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS'])
elif game_select_var == 'Pick6':
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Points', 'Rebounds', 'Assists', '3-Pointers Made', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds'])
if st.button('Simulate Prop Category'):
with col2:
with df_hold_container.container():
if prop_type_var == 'All Props':
if game_select_var == 'Aggregate':
sim_vars = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_3_POINTERS_MADE', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
elif game_select_var == 'Pick6':
sim_vars = ['Points', 'Rebounds', 'Assists', '3-Pointers Made', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds']
for prop in sim_vars:
if game_select_var == 'Aggregate':
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df_raw = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df_raw.rename(columns={"Full_name": "Player"}, inplace = True)
for books in book_selections:
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
prop_df = prop_df.drop_duplicates(subset=['Player'])
prop_df = prop_df.loc[prop_df['Prop'] != 0]
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df = df.reset_index(drop=True)
prop_dict = dict(zip(df.Player, df.Prop))
team_dict = dict(zip(df.Player, df.Team))
book_dict = dict(zip(df.Player, df.book))
over_dict = dict(zip(df.Player, df.Over))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop == "NBA_GAME_PLAYER_POINTS" or prop == "Points":
df['Median'] = df['Points']
elif prop == "NBA_GAME_PLAYER_REBOUNDS" or prop == "Rebounds":
df['Median'] = df['Rebounds']
elif prop == "NBA_GAME_PLAYER_ASSISTS" or prop == "Assists":
df['Median'] = df['Assists']
elif prop == "NBA_GAME_PLAYER_3_POINTERS_MADE" or prop == "3-Pointers Made":
df['Median'] = df['3P']
elif prop == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS" or prop == "Points + Assists + Rebounds":
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
elif prop == "NBA_GAME_PLAYER_POINTS_REBOUNDS" or prop == "Points + Rebounds":
df['Median'] = df['Points'] + df['Rebounds']
elif prop == "NBA_GAME_PLAYER_POINTS_ASSISTS" or prop == "Points + Assists":
df['Median'] = df['Points'] + df['Assists']
elif prop == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS" or prop == "Assists + Rebounds":
df['Median'] = df['Rebounds'] + df['Assists']
flex_file = df.copy()
flex_file['Floor'] = flex_file['Median'] * .25
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
flex_file['STD'] = flex_file['Median'] / 4
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
prop_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop Type'] = prop
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
st.write(f'finished {prop}')
elif prop_type_var != 'All Props':
if game_select_var == 'Aggregate':
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
elif game_select_var == 'Pick6':
prop_df_raw = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
prop_df_raw = prop_df_raw.rename(columns={"Full_name": "Player"})
for books in book_selections:
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
if prop_type_var == "NBA_GAME_PLAYER_POINTS":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS']
elif prop_type_var == "Points":
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points']
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS']
elif prop_type_var == "Rebounds":
prop_df = prop_df.loc[prop_df['prop_type'] == 'Rebounds']
elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_ASSISTS']
elif prop_type_var == "Assists":
prop_df = prop_df.loc[prop_df['prop_type'] == 'Assists']
elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_3_POINTERS_MADE']
elif prop_type_var == "3-Pointers Made":
prop_df = prop_df.loc[prop_df['prop_type'] == '3-Pointers Made']
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS']
elif prop_type_var == "Points + Assists + Rebounds":
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Assists + Rebounds']
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS']
elif prop_type_var == "Points + Rebounds":
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Rebounds']
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_ASSISTS']
elif prop_type_var == "Points + Assists":
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Assists']
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS":
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
elif prop_type_var == "Assists + Rebounds":
prop_df = prop_df.loc[prop_df['prop_type'] == 'Assists + Rebounds']
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
prop_df = prop_df.rename(columns={"over_prop": "Prop"})
prop_df = prop_df.loc[prop_df['Prop'] != 0]
prop_df = prop_df.drop_duplicates(subset=['Player'])
prop_df['Over'] = 1 / prop_df['over_line']
prop_df['Under'] = 1 / prop_df['under_line']
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
df = df.reset_index(drop=True)
prop_dict = dict(zip(df.Player, df.Prop))
book_dict = dict(zip(df.Player, df.book))
over_dict = dict(zip(df.Player, df.Over))
team_dict = dict(zip(df.Player, df.Team))
under_dict = dict(zip(df.Player, df.Under))
total_sims = 1000
df.replace("", 0, inplace=True)
if prop_type_var == "NBA_GAME_PLAYER_POINTS" or prop_type_var == "Points":
df['Median'] = df['Points']
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS" or prop_type_var == "Rebounds":
df['Median'] = df['Rebounds']
elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS" or prop_type_var == "Assists":
df['Median'] = df['Assists']
elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE" or prop_type_var == "3-Pointers Made":
df['Median'] = df['3P']
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS" or prop_type_var == "Points + Assists + Rebounds":
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS" or prop_type_var == "Points + Rebounds":
df['Median'] = df['Points'] + df['Rebounds']
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS" or prop_type_var == "Points + Assists":
df['Median'] = df['Points'] + df['Assists']
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS" or prop_type_var == "Assists + Rebounds":
df['Median'] = df['Rebounds'] + df['Assists']
flex_file = df.copy()
flex_file['Floor'] = flex_file['Median'] * .25
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
flex_file['STD'] = flex_file['Median'] / 4
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
hold_file = flex_file.copy()
overall_file = flex_file.copy()
prop_file = flex_file.copy()
overall_players = overall_file[['Player']]
for x in range(0,total_sims):
prop_file[x] = prop_file['Prop']
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
for x in range(0,total_sims):
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
prop_check = (overall_file - prop_file)
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
players_only['10%'] = overall_file.quantile(0.1, axis=1)
players_only['90%'] = overall_file.quantile(0.9, axis=1)
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
players_only['Imp Over'] = players_only['Player'].map(over_dict)
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
players_only['Imp Under'] = players_only['Player'].map(under_dict)
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
players_only['Book'] = players_only['Player'].map(book_dict)
players_only['Prop'] = players_only['Player'].map(prop_dict)
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
players_only['prop_threshold'] = .10
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
players_only['Edge'] = players_only['Bet_check']
players_only['Prop Type'] = prop_type_var
players_only['Player'] = hold_file[['Player']]
players_only['Team'] = players_only['Player'].map(team_dict)
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
final_outcomes = sim_all_hold
st.write(f'finished {prop_type_var}')
final_outcomes = final_outcomes.dropna()
if game_select_var == 'Pick6':
final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
with df_hold_container:
df_hold_container = st.empty()
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
with export_container:
export_container = st.empty()
st.download_button(
label="Export Projections",
data=convert_df_to_csv(final_outcomes),
file_name='NBA_prop_proj.csv',
mime='text/csv',
key='prop_proj',
) |