Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,8 @@
|
|
1 |
-
import pulp
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import random
|
5 |
-
import sys
|
6 |
-
import openpyxl
|
7 |
-
import re
|
8 |
-
import time
|
9 |
import streamlit as st
|
10 |
-
import matplotlib
|
11 |
-
from matplotlib.colors import LinearSegmentedColormap
|
12 |
-
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
|
13 |
-
import json
|
14 |
-
import requests
|
15 |
import gspread
|
16 |
-
import plotly.
|
17 |
|
18 |
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
19 |
"https://www.googleapis.com/auth/drive"]
|
@@ -35,115 +24,303 @@ gc = gspread.service_account_from_dict(credentials)
|
|
35 |
|
36 |
st.set_page_config(layout="wide")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
stat_format = {'Win%': '{:.2%}'}
|
41 |
|
42 |
-
|
43 |
-
props_overall = 'DK_NBA_Props'
|
44 |
-
player_overall = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=172632260'
|
45 |
-
points_overall = 'DK_Points_Props'
|
46 |
-
assists_overall = 'DK_Assists_Props'
|
47 |
-
rebounds_overall = 'DK_Rebounds_Props'
|
48 |
-
pa_overall = 'DK_PA_Props'
|
49 |
-
pr_overall = 'DK_PR_Props'
|
50 |
-
pra_overall = 'DK_PRA_Props'
|
51 |
|
52 |
@st.cache_data
|
53 |
-
def
|
54 |
-
sh = gc.open_by_url(
|
55 |
-
worksheet = sh.
|
56 |
-
load_display = pd.DataFrame(worksheet.get_all_records())
|
57 |
-
overall_data = load_display[['Name', 'Position', 'Team', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks']]
|
58 |
-
overall_data.rename(columns={"Name": "player"}, inplace = True)
|
59 |
-
overall_data['Points + Rebounds'] = overall_data['Points'] + overall_data['Rebounds']
|
60 |
-
overall_data['Points + Assists'] = overall_data['Points'] + overall_data['Assists']
|
61 |
-
overall_data['Points + Rebounds + Assists'] = overall_data['Points'] + overall_data['Rebounds'] + overall_data['Assists']
|
62 |
-
|
63 |
-
return overall_data
|
64 |
-
|
65 |
-
@st.cache_data
|
66 |
-
def load_game_betting(URL):
|
67 |
-
sh = gc.open_by_url(URL)
|
68 |
-
worksheet = sh.get_worksheet(1)
|
69 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
|
|
|
|
70 |
|
71 |
return raw_display
|
72 |
|
73 |
@st.cache_data
|
74 |
-
def
|
75 |
-
sh = gc.
|
76 |
-
worksheet = sh.
|
77 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
78 |
-
raw_display.
|
|
|
79 |
|
80 |
return raw_display
|
81 |
|
82 |
@st.cache_data
|
83 |
-
def
|
84 |
-
sh = gc.
|
85 |
-
worksheet = sh.
|
86 |
-
raw_display =
|
87 |
|
88 |
return raw_display
|
89 |
|
90 |
@st.cache_data
|
91 |
-
def
|
92 |
-
sh = gc.
|
93 |
-
worksheet = sh.
|
94 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
95 |
-
raw_display.
|
96 |
-
raw_display = raw_display.
|
97 |
|
98 |
return raw_display
|
99 |
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "
|
104 |
|
105 |
def convert_df_to_csv(df):
|
106 |
return df.to_csv().encode('utf-8')
|
107 |
|
108 |
with tab1:
|
109 |
-
|
110 |
-
|
111 |
-
# i.e. clear values from both square and cube
|
112 |
st.cache_data.clear()
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
st.download_button(
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
)
|
121 |
|
122 |
with tab2:
|
123 |
-
|
124 |
-
|
125 |
-
# i.e. clear values from both square and cube
|
126 |
st.cache_data.clear()
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
st.download_button(
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
)
|
139 |
|
140 |
with tab3:
|
141 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
143 |
-
if st.button("Reset Data/Load Data", key='
|
144 |
-
# Clear values from *all* all in-memory and on-disk data caches:
|
145 |
-
# i.e. clear values from both square and cube
|
146 |
st.cache_data.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
col1, col2 = st.columns([1, 5])
|
148 |
|
149 |
with col2:
|
@@ -153,124 +330,81 @@ with tab3:
|
|
153 |
export_container = st.empty()
|
154 |
|
155 |
with col1:
|
156 |
-
prop_type_var = st.selectbox('Select prop category', options = ['
|
157 |
|
158 |
if st.button('Simulate Prop Category'):
|
159 |
with col2:
|
160 |
-
|
161 |
-
with st.spinner('Wait for it...'):
|
162 |
|
163 |
with df_hold_container.container():
|
164 |
|
165 |
-
if prop_type_var == "
|
166 |
-
|
167 |
-
prop_df =
|
168 |
-
prop_df = prop_df[['Player', '
|
169 |
-
prop_df
|
170 |
-
prop_df
|
171 |
-
|
172 |
-
prop_df.
|
173 |
-
|
174 |
-
df.
|
175 |
-
elif prop_type_var == "
|
176 |
-
|
177 |
-
prop_df =
|
178 |
-
prop_df = prop_df[['Player', '
|
179 |
-
prop_df
|
180 |
-
prop_df
|
181 |
-
|
182 |
-
prop_df.
|
183 |
-
|
184 |
-
df.
|
185 |
-
elif prop_type_var == "
|
186 |
-
|
187 |
-
prop_df =
|
188 |
-
prop_df = prop_df[['Player', '
|
189 |
-
prop_df
|
190 |
-
prop_df
|
191 |
-
|
192 |
-
prop_df.
|
193 |
-
|
194 |
-
df.
|
195 |
-
elif prop_type_var == "Points + Assists":
|
196 |
-
player_df = load_stat_specific(pa_overall)
|
197 |
-
prop_df = load_props(props_overall)
|
198 |
-
prop_df = prop_df[['Player', 'points_assists', 'over_points_assists_line', 'under_points_assists_line']]
|
199 |
-
prop_df = prop_df.loc[prop_df['points_assists'] > 0]
|
200 |
-
prop_df['Over'] = np.where(prop_df['over_points_assists_line'] < 0, (-(prop_df['over_points_assists_line'])/((-(prop_df['over_points_assists_line']))+100)), 100/(prop_df['over_points_assists_line']+100))
|
201 |
-
prop_df['Under'] = np.where(prop_df['under_points_assists_line'] < 0, (-(prop_df['under_points_assists_line'])/((-(prop_df['under_points_assists_line']))+100)), 100/(prop_df['under_points_assists_line']+100))
|
202 |
-
prop_df.rename(columns={"points_assists": "Prop"}, inplace = True)
|
203 |
-
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
204 |
-
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
205 |
-
elif prop_type_var == "Points + Rebounds":
|
206 |
-
player_df = load_stat_specific(pr_overall)
|
207 |
-
prop_df = load_props(props_overall)
|
208 |
-
prop_df = prop_df[['Player', 'points_rebounds', 'over_points_rebounds_line', 'under_points_rebounds_line']]
|
209 |
-
prop_df = prop_df.loc[prop_df['points_rebounds'] > 0]
|
210 |
-
prop_df['Over'] = np.where(prop_df['over_points_rebounds_line'] < 0, (-(prop_df['over_points_rebounds_line'])/((-(prop_df['over_points_rebounds_line']))+100)), 100/(prop_df['over_points_rebounds_line']+100))
|
211 |
-
prop_df['Under'] = np.where(prop_df['under_points_rebounds_line'] < 0, (-(prop_df['under_points_rebounds_line'])/((-(prop_df['under_points_rebounds_line']))+100)), 100/(prop_df['under_points_rebounds_line']+100))
|
212 |
-
prop_df.rename(columns={"points_rebounds": "Prop"}, inplace = True)
|
213 |
-
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
|
214 |
-
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
215 |
-
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
216 |
-
elif prop_type_var == "Points + Rebounds + Assists":
|
217 |
-
player_df = load_stat_specific(pra_overall)
|
218 |
-
prop_df = load_props(props_overall)
|
219 |
-
prop_df = prop_df[['Player', 'points_rebounds_assists', 'over_points_rebounds_assists_line', 'under_points_rebounds_assists_line']]
|
220 |
-
prop_df = prop_df.loc[prop_df['points_rebounds_assists'] > 0]
|
221 |
-
prop_df['Over'] = np.where(prop_df['over_points_rebounds_assists_line'] < 0, (-(prop_df['over_points_rebounds_assists_line'])/((-(prop_df['over_points_rebounds_assists_line']))+100)), 100/(prop_df['over_points_rebounds_assists_line']+100))
|
222 |
-
prop_df['Under'] = np.where(prop_df['under_points_rebounds_assists_line'] < 0, (-(prop_df['under_points_rebounds_assists_line'])/((-(prop_df['under_points_rebounds_assists_line']))+100)), 100/(prop_df['under_points_rebounds_assists_line']+100))
|
223 |
-
prop_df.rename(columns={"points_rebounds_assists": "Prop"}, inplace = True)
|
224 |
-
prop_df = prop_df[['Player', 'Prop', 'Over', 'Under']]
|
225 |
-
df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
226 |
-
df.rename(columns={"weighted%": "weighted"}, inplace = True)
|
227 |
|
228 |
prop_dict = dict(zip(df.Player, df.Prop))
|
229 |
over_dict = dict(zip(df.Player, df.Over))
|
230 |
under_dict = dict(zip(df.Player, df.Under))
|
231 |
-
weighted_dict = dict(zip(df.Player, df.weighted))
|
232 |
|
233 |
total_sims = 1000
|
234 |
|
235 |
df.replace("", 0, inplace=True)
|
236 |
|
237 |
-
if prop_type_var == "
|
238 |
-
df['Median'] = df['
|
239 |
-
elif prop_type_var == "
|
240 |
-
df['Median'] = df['
|
241 |
-
elif prop_type_var == "
|
242 |
-
df['Median'] = df['
|
243 |
-
elif prop_type_var == "Points + Assists":
|
244 |
-
df['Median'] = df['Points + Assists']
|
245 |
-
elif prop_type_var == "Points + Rebounds":
|
246 |
-
df['Median'] = df['Points + Rebounds']
|
247 |
-
elif prop_type_var == "Points + Rebounds + Assists":
|
248 |
-
df['Median'] = df['Points + Rebounds + Assists']
|
249 |
|
250 |
flex_file = df
|
251 |
flex_file['Floor'] = flex_file['Median'] * .20
|
252 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .
|
253 |
-
flex_file['STD'] =
|
254 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
255 |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
256 |
|
257 |
hold_file = flex_file
|
258 |
overall_file = flex_file
|
259 |
prop_file = flex_file
|
260 |
-
|
261 |
overall_players = overall_file[['Player']]
|
262 |
|
263 |
for x in range(0,total_sims):
|
264 |
prop_file[x] = prop_file['Prop']
|
265 |
|
266 |
-
prop_file = prop_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
267 |
-
prop_file.astype('int').dtypes
|
268 |
|
269 |
for x in range(0,total_sims):
|
270 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
271 |
|
272 |
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
273 |
-
overall_file.astype('int').dtypes
|
274 |
|
275 |
players_only = hold_file[['Player']]
|
276 |
|
@@ -279,19 +413,17 @@ with tab3:
|
|
279 |
prop_check = (overall_file - prop_file)
|
280 |
|
281 |
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
282 |
-
players_only['Weighted_over'] = players_only['Player'].map(weighted_dict)
|
283 |
-
players_only['Weighted_under'] = 1 - players_only['Player'].map(weighted_dict)
|
284 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
285 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
286 |
-
players_only['Over'] = prop_check[prop_check
|
287 |
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
288 |
-
players_only['Over%'] = players_only[["Over", "
|
289 |
-
players_only['Under'] = prop_check[prop_check <
|
290 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
291 |
-
players_only['Under%'] = players_only[["Under", "
|
292 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
293 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
294 |
-
players_only['prop_threshold'] =
|
295 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
296 |
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
297 |
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
@@ -316,9 +448,8 @@ with tab3:
|
|
316 |
st.download_button(
|
317 |
label="Export Projections",
|
318 |
data=convert_df_to_csv(final_outcomes),
|
319 |
-
file_name='
|
320 |
mime='text/csv',
|
321 |
key='prop_proj',
|
322 |
)
|
323 |
-
|
324 |
-
st.info('Coming soon!')
|
|
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
4 |
import gspread
|
5 |
+
import plotly.express as px
|
6 |
|
7 |
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
8 |
"https://www.googleapis.com/auth/drive"]
|
|
|
24 |
|
25 |
st.set_page_config(layout="wide")
|
26 |
|
27 |
+
game_format = {'Win%': '{:.2%}', 'Vegas': '{:.2%}', 'Win% Diff': '{:.2%}'}
|
28 |
+
american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
|
|
|
29 |
|
30 |
+
master_hold = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=694077504'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
@st.cache_data
|
33 |
+
def game_betting_model():
|
34 |
+
sh = gc.open_by_url(master_hold)
|
35 |
+
worksheet = sh.worksheet('Game_Betting')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
37 |
+
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
38 |
+
raw_display = raw_display.dropna()
|
39 |
|
40 |
return raw_display
|
41 |
|
42 |
@st.cache_data
|
43 |
+
def player_stat_table():
|
44 |
+
sh = gc.open_by_url(master_hold)
|
45 |
+
worksheet = sh.worksheet('Prop_Table')
|
46 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
47 |
+
raw_display.replace('', np.nan, inplace=True)
|
48 |
+
raw_display = raw_display.dropna()
|
49 |
|
50 |
return raw_display
|
51 |
|
52 |
@st.cache_data
|
53 |
+
def timestamp_table():
|
54 |
+
sh = gc.open_by_url(master_hold)
|
55 |
+
worksheet = sh.worksheet('DK_ROO')
|
56 |
+
raw_display = worksheet.acell('U2').value
|
57 |
|
58 |
return raw_display
|
59 |
|
60 |
@st.cache_data
|
61 |
+
def player_prop_table():
|
62 |
+
sh = gc.open_by_url(master_hold)
|
63 |
+
worksheet = sh.worksheet('prop_frame')
|
64 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
65 |
+
raw_display.replace('', np.nan, inplace=True)
|
66 |
+
raw_display = raw_display.dropna()
|
67 |
|
68 |
return raw_display
|
69 |
|
70 |
+
game_model = game_betting_model()
|
71 |
+
overall_stats = player_stat_table()
|
72 |
+
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
73 |
+
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
74 |
+
timestamp = timestamp_table()
|
75 |
+
prop_frame = player_prop_table()
|
76 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
77 |
|
78 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Simulations", "Stat Specific Simulations"])
|
79 |
|
80 |
def convert_df_to_csv(df):
|
81 |
return df.to_csv().encode('utf-8')
|
82 |
|
83 |
with tab1:
|
84 |
+
st.info(t_stamp)
|
85 |
+
if st.button("Reset Data", key='reset1'):
|
|
|
86 |
st.cache_data.clear()
|
87 |
+
game_model = game_betting_model()
|
88 |
+
overall_stats = player_stat_table()
|
89 |
+
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
90 |
+
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
91 |
+
prop_frame = player_prop_table()
|
92 |
+
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
93 |
+
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
94 |
+
team_frame = game_model
|
95 |
+
if line_var1 == 'Percentage':
|
96 |
+
team_frame = team_frame[['team', 'Opp', 'Win%', 'Vegas', 'Win% Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
|
97 |
+
team_frame = team_frame.set_index('team')
|
98 |
+
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
|
99 |
+
if line_var1 == 'American':
|
100 |
+
team_frame = team_frame[['team', 'Opp', 'Win Line', 'Vegas Line', 'Line Diff', 'PD Spread', 'Vegas Spread', 'Spread Diff']]
|
101 |
+
team_frame = team_frame.set_index('team')
|
102 |
+
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
103 |
+
|
104 |
st.download_button(
|
105 |
+
label="Export Team Model",
|
106 |
+
data=convert_df_to_csv(team_frame),
|
107 |
+
file_name='NFL_team_betting_export.csv',
|
108 |
+
mime='text/csv',
|
109 |
+
key='team_export',
|
110 |
)
|
111 |
|
112 |
with tab2:
|
113 |
+
st.info(t_stamp)
|
114 |
+
if st.button("Reset Data", key='reset2'):
|
|
|
115 |
st.cache_data.clear()
|
116 |
+
game_model = game_betting_model()
|
117 |
+
overall_stats = player_stat_table()
|
118 |
+
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
119 |
+
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
120 |
+
prop_frame = player_prop_table()
|
121 |
+
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
122 |
+
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
123 |
+
if split_var1 == 'Specific Teams':
|
124 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = qb_stats['Team'].unique(), key='team_var1')
|
125 |
+
elif split_var1 == 'All':
|
126 |
+
team_var1 = qb_stats.Team.values.tolist()
|
127 |
+
qb_stats = qb_stats[qb_stats['Team'].isin(team_var1)]
|
128 |
+
qb_stats_disp = qb_stats.set_index('Player')
|
129 |
+
qb_stats_disp = qb_stats_disp.sort_values(by='PPR', ascending=False)
|
130 |
+
st.dataframe(qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
131 |
st.download_button(
|
132 |
+
label="Export Prop Model",
|
133 |
+
data=convert_df_to_csv(qb_stats_disp),
|
134 |
+
file_name='NFL_qb_stats_export.csv',
|
135 |
+
mime='text/csv',
|
136 |
+
key='pitcher_prop_export',
|
137 |
)
|
138 |
|
139 |
with tab3:
|
140 |
+
st.info(t_stamp)
|
141 |
+
if st.button("Reset Data", key='reset3'):
|
142 |
+
st.cache_data.clear()
|
143 |
+
game_model = game_betting_model()
|
144 |
+
overall_stats = player_stat_table()
|
145 |
+
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
146 |
+
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
147 |
+
prop_frame = player_prop_table()
|
148 |
+
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
149 |
+
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
150 |
+
if split_var2 == 'Specific Teams':
|
151 |
+
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
|
152 |
+
elif split_var2 == 'All':
|
153 |
+
team_var2 = non_qb_stats.Team.values.tolist()
|
154 |
+
non_qb_stats = non_qb_stats[non_qb_stats['Team'].isin(team_var2)]
|
155 |
+
non_qb_stats_disp = non_qb_stats.set_index('Player')
|
156 |
+
non_qb_stats_disp = non_qb_stats_disp.sort_values(by='PPR', ascending=False)
|
157 |
+
st.dataframe(non_qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
158 |
+
st.download_button(
|
159 |
+
label="Export Prop Model",
|
160 |
+
data=convert_df_to_csv(non_qb_stats_disp),
|
161 |
+
file_name='NFL_nonqb_stats_export.csv',
|
162 |
+
mime='text/csv',
|
163 |
+
key='hitter_prop_export',
|
164 |
+
)
|
165 |
+
|
166 |
+
with tab4:
|
167 |
+
st.info(t_stamp)
|
168 |
+
if st.button("Reset Data", key='reset4'):
|
169 |
+
st.cache_data.clear()
|
170 |
+
game_model = game_betting_model()
|
171 |
+
overall_stats = player_stat_table()
|
172 |
+
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
173 |
+
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
174 |
+
prop_frame = player_prop_table()
|
175 |
+
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
176 |
+
col1, col2 = st.columns([1, 5])
|
177 |
+
|
178 |
+
with col2:
|
179 |
+
df_hold_container = st.empty()
|
180 |
+
info_hold_container = st.empty()
|
181 |
+
plot_hold_container = st.empty()
|
182 |
+
|
183 |
+
with col1:
|
184 |
+
player_check = st.selectbox('Select player to simulate props', options = overall_stats['Player'].unique())
|
185 |
+
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Pass Yards', 'Pass TDs', 'Rush Yards', 'Rush TDs', 'Receptions', 'Rec Yards', 'Rec TDs', 'Fantasy', 'FD Fantasy', 'PrizePicks'])
|
186 |
+
|
187 |
+
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
|
188 |
+
if prop_type_var == 'Pass Yards':
|
189 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 100.0, max_value = 400.5, value = 250.5, step = .5)
|
190 |
+
elif prop_type_var == 'Pass TDs':
|
191 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
|
192 |
+
elif prop_type_var == 'Rush Yards':
|
193 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
|
194 |
+
elif prop_type_var == 'Rush TDs':
|
195 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
|
196 |
+
elif prop_type_var == 'Receptions':
|
197 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 15.5, value = 5.5, step = .5)
|
198 |
+
elif prop_type_var == 'Rec Yards':
|
199 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
|
200 |
+
elif prop_type_var == 'Rec TDs':
|
201 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
|
202 |
+
elif prop_type_var == 'Fantasy':
|
203 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
|
204 |
+
elif prop_type_var == 'FD Fantasy':
|
205 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
|
206 |
+
elif prop_type_var == 'PrizePicks':
|
207 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
|
208 |
+
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
|
209 |
+
line_var = line_var + 1
|
210 |
+
|
211 |
+
if st.button('Simulate Prop'):
|
212 |
+
with col2:
|
213 |
+
|
214 |
+
with df_hold_container.container():
|
215 |
+
|
216 |
+
df = overall_stats
|
217 |
+
|
218 |
+
total_sims = 5000
|
219 |
+
|
220 |
+
df.replace("", 0, inplace=True)
|
221 |
+
|
222 |
+
player_var = df.loc[df['Player'] == player_check]
|
223 |
+
player_var = player_var.reset_index()
|
224 |
+
|
225 |
+
if prop_type_var == 'Pass Yards':
|
226 |
+
df['Median'] = df['pass_yards']
|
227 |
+
elif prop_type_var == 'Pass TDs':
|
228 |
+
df['Median'] = df['pass_tds']
|
229 |
+
elif prop_type_var == 'Rush Yards':
|
230 |
+
df['Median'] = df['rush_yards']
|
231 |
+
elif prop_type_var == 'Rush TDs':
|
232 |
+
df['Median'] = df['rush_tds']
|
233 |
+
elif prop_type_var == 'Receptions':
|
234 |
+
df['Median'] = df['rec']
|
235 |
+
elif prop_type_var == 'Rec Yards':
|
236 |
+
df['Median'] = df['rec_yards']
|
237 |
+
elif prop_type_var == 'Rec TDs':
|
238 |
+
df['Median'] = df['rec_tds']
|
239 |
+
elif prop_type_var == 'Fantasy':
|
240 |
+
df['Median'] = df['PPR']
|
241 |
+
elif prop_type_var == 'FD Fantasy':
|
242 |
+
df['Median'] = df['Half_PPF']
|
243 |
+
elif prop_type_var == 'PrizePicks':
|
244 |
+
df['Median'] = df['Half_PPF']
|
245 |
+
|
246 |
+
flex_file = df
|
247 |
+
flex_file['Floor'] = flex_file['Median'] * .20
|
248 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
|
249 |
+
flex_file['STD'] = flex_file['Median'] / 4
|
250 |
+
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
|
251 |
+
|
252 |
+
hold_file = flex_file
|
253 |
+
overall_file = flex_file
|
254 |
+
salary_file = flex_file
|
255 |
+
|
256 |
+
overall_players = overall_file[['Player']]
|
257 |
+
|
258 |
+
for x in range(0,total_sims):
|
259 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
260 |
+
|
261 |
+
overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
262 |
+
overall_file.astype('int').dtypes
|
263 |
+
|
264 |
+
players_only = hold_file[['Player']]
|
265 |
+
|
266 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
267 |
+
|
268 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
269 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
270 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
271 |
+
if ou_var == 'Over':
|
272 |
+
players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
|
273 |
+
elif ou_var == 'Under':
|
274 |
+
players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
|
275 |
+
|
276 |
+
players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
|
277 |
+
|
278 |
+
players_only['Player'] = hold_file[['Player']]
|
279 |
+
|
280 |
+
final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
|
281 |
+
final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
|
282 |
+
final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
|
283 |
+
player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
|
284 |
+
player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
|
285 |
+
player_outcomes = player_outcomes.reset_index()
|
286 |
+
player_outcomes.columns = ['Instance', 'Outcome']
|
287 |
+
|
288 |
+
x1 = player_outcomes.Outcome.to_numpy()
|
289 |
+
|
290 |
+
print(x1)
|
291 |
+
|
292 |
+
hist_data = [x1]
|
293 |
+
|
294 |
+
group_labels = ['player outcomes']
|
295 |
+
|
296 |
+
fig = px.histogram(
|
297 |
+
player_outcomes, x='Outcome')
|
298 |
+
fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
|
299 |
+
|
300 |
+
with df_hold_container:
|
301 |
+
df_hold_container = st.empty()
|
302 |
+
format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
|
303 |
+
st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
|
304 |
+
|
305 |
+
with info_hold_container:
|
306 |
+
st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
|
307 |
+
|
308 |
+
with plot_hold_container:
|
309 |
+
st.dataframe(player_outcomes, use_container_width = True)
|
310 |
+
plot_hold_container = st.empty()
|
311 |
+
st.plotly_chart(fig, use_container_width=True)
|
312 |
+
|
313 |
+
with tab5:
|
314 |
+
st.info(t_stamp)
|
315 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
316 |
+
if st.button("Reset Data/Load Data", key='reset5'):
|
|
|
|
|
317 |
st.cache_data.clear()
|
318 |
+
game_model = game_betting_model()
|
319 |
+
overall_stats = player_stat_table()
|
320 |
+
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
321 |
+
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
322 |
+
prop_frame = player_prop_table()
|
323 |
+
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
324 |
col1, col2 = st.columns([1, 5])
|
325 |
|
326 |
with col2:
|
|
|
330 |
export_container = st.empty()
|
331 |
|
332 |
with col1:
|
333 |
+
prop_type_var = st.selectbox('Select prop category', options = ['Pass Yards', 'Rush Yards', 'Receiving Yards'])
|
334 |
|
335 |
if st.button('Simulate Prop Category'):
|
336 |
with col2:
|
|
|
|
|
337 |
|
338 |
with df_hold_container.container():
|
339 |
|
340 |
+
if prop_type_var == "Pass Yards":
|
341 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
342 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'pass_yards']
|
343 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
344 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
345 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
346 |
+
st.table(prop_df)
|
347 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
348 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
349 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
350 |
+
elif prop_type_var == "Rush Yards":
|
351 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
352 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'rush_yards']
|
353 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
354 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
355 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
356 |
+
st.table(prop_df)
|
357 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
358 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
359 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
360 |
+
elif prop_type_var == "Receiving Yards":
|
361 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
362 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'rec_yards']
|
363 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
364 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
365 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
366 |
+
st.table(prop_df)
|
367 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
368 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
369 |
+
df = pd.merge(overall_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
prop_dict = dict(zip(df.Player, df.Prop))
|
372 |
over_dict = dict(zip(df.Player, df.Over))
|
373 |
under_dict = dict(zip(df.Player, df.Under))
|
|
|
374 |
|
375 |
total_sims = 1000
|
376 |
|
377 |
df.replace("", 0, inplace=True)
|
378 |
|
379 |
+
if prop_type_var == "Pass Yards":
|
380 |
+
df['Median'] = df['pass_yards']
|
381 |
+
elif prop_type_var == "Rush Yards":
|
382 |
+
df['Median'] = df['rush_yards']
|
383 |
+
elif prop_type_var == "Receiving Yards":
|
384 |
+
df['Median'] = df['rec_yards']
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
flex_file = df
|
387 |
flex_file['Floor'] = flex_file['Median'] * .20
|
388 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
|
389 |
+
flex_file['STD'] = flex_file['Median'] / 4
|
390 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
391 |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
392 |
|
393 |
hold_file = flex_file
|
394 |
overall_file = flex_file
|
395 |
prop_file = flex_file
|
396 |
+
|
397 |
overall_players = overall_file[['Player']]
|
398 |
|
399 |
for x in range(0,total_sims):
|
400 |
prop_file[x] = prop_file['Prop']
|
401 |
|
402 |
+
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
|
|
403 |
|
404 |
for x in range(0,total_sims):
|
405 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
406 |
|
407 |
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
|
|
408 |
|
409 |
players_only = hold_file[['Player']]
|
410 |
|
|
|
413 |
prop_check = (overall_file - prop_file)
|
414 |
|
415 |
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
|
|
|
|
416 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
417 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
418 |
+
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
419 |
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
420 |
+
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
421 |
+
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
422 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
423 |
+
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
424 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
425 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
426 |
+
players_only['prop_threshold'] = .10
|
427 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
428 |
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
429 |
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
|
|
448 |
st.download_button(
|
449 |
label="Export Projections",
|
450 |
data=convert_df_to_csv(final_outcomes),
|
451 |
+
file_name='NFL_prop_proj.csv',
|
452 |
mime='text/csv',
|
453 |
key='prop_proj',
|
454 |
)
|
455 |
+
|
|