Spaces:
Running
Running
James McCool
commited on
Commit
·
7fecbe2
1
Parent(s):
fd6e941
cleaned up some data parsing
Browse files
app.py
CHANGED
@@ -520,99 +520,53 @@ with tab5:
|
|
520 |
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
521 |
elif game_select_var == 'Pick6':
|
522 |
prop_df_raw = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
|
|
523 |
|
524 |
for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
|
525 |
if game_select_var == 'Pick6':
|
526 |
books = 'Pick6'
|
527 |
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
|
|
|
528 |
if prop_type_var == "NBA_GAME_PLAYER_POINTS":
|
529 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS']
|
530 |
elif prop_type_var == "Points":
|
531 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points']
|
532 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
533 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
534 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
535 |
-
st.table(prop_df)
|
536 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
537 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
538 |
-
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
539 |
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS":
|
540 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS']
|
541 |
elif prop_type_var == "Rebounds":
|
542 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Rebounds']
|
543 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
544 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
545 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
546 |
-
st.table(prop_df)
|
547 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
548 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
549 |
-
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
550 |
elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS":
|
551 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_ASSISTS']
|
552 |
elif prop_type_var == "Assists":
|
553 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Assists']
|
554 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
555 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
556 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
557 |
-
st.table(prop_df)
|
558 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
559 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
560 |
-
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
561 |
elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE":
|
562 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_3_POINTERS_MADE']
|
563 |
elif prop_type_var == "3-Pointers Made":
|
564 |
prop_df = prop_df.loc[prop_df['prop_type'] == '3-Pointers Made']
|
565 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
566 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
567 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
568 |
-
st.table(prop_df)
|
569 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
570 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
571 |
-
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
572 |
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS":
|
573 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS']
|
574 |
elif prop_type_var == "Points + Rebounds + Assists":
|
575 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Rebounds + Assists']
|
576 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
577 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
578 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
579 |
-
st.table(prop_df)
|
580 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
581 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
582 |
-
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
583 |
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS":
|
584 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS']
|
585 |
elif prop_type_var == "Points + Rebounds":
|
586 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Rebounds']
|
587 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
588 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
589 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
590 |
-
st.table(prop_df)
|
591 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
592 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
593 |
-
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
594 |
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS":
|
595 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_ASSISTS']
|
596 |
elif prop_type_var == "Points + Assists":
|
597 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Assists']
|
598 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
599 |
-
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
600 |
-
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
601 |
-
st.table(prop_df)
|
602 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
603 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
604 |
-
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
605 |
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS":
|
606 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
|
607 |
elif prop_type_var == "Assists + Rebounds":
|
608 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Assists + Rebounds']
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
|
|
616 |
|
617 |
prop_dict = dict(zip(df.Player, df.Prop))
|
618 |
book_dict = dict(zip(df.Player, df.book))
|
|
|
520 |
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
521 |
elif game_select_var == 'Pick6':
|
522 |
prop_df_raw = pick_frame[['Full_name', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
523 |
+
prop_df_raw = prop_df_raw.rename(columns={"Full_name": "Player"})
|
524 |
|
525 |
for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
|
526 |
if game_select_var == 'Pick6':
|
527 |
books = 'Pick6'
|
528 |
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
|
529 |
+
|
530 |
if prop_type_var == "NBA_GAME_PLAYER_POINTS":
|
531 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS']
|
532 |
elif prop_type_var == "Points":
|
533 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS":
|
535 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS']
|
536 |
elif prop_type_var == "Rebounds":
|
537 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Rebounds']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS":
|
539 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_ASSISTS']
|
540 |
elif prop_type_var == "Assists":
|
541 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Assists']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE":
|
543 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_3_POINTERS_MADE']
|
544 |
elif prop_type_var == "3-Pointers Made":
|
545 |
prop_df = prop_df.loc[prop_df['prop_type'] == '3-Pointers Made']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS":
|
547 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS']
|
548 |
elif prop_type_var == "Points + Rebounds + Assists":
|
549 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Rebounds + Assists']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS":
|
551 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS']
|
552 |
elif prop_type_var == "Points + Rebounds":
|
553 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Rebounds']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS":
|
555 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_ASSISTS']
|
556 |
elif prop_type_var == "Points + Assists":
|
557 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Points + Assists']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS":
|
559 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
|
560 |
elif prop_type_var == "Assists + Rebounds":
|
561 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'Assists + Rebounds']
|
562 |
+
|
563 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
564 |
+
prop_df = prop_df.rename(columns={"over_prop": "Prop"})
|
565 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
566 |
+
st.table(prop_df)
|
567 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
568 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
569 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
570 |
|
571 |
prop_dict = dict(zip(df.Player, df.Prop))
|
572 |
book_dict = dict(zip(df.Player, df.book))
|