Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -59,8 +59,15 @@ def init_baselines():
|
|
59 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
60 |
raw_display.replace('', np.nan, inplace=True)
|
61 |
raw_display.rename(columns={"Name": "Player"}, inplace = True)
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
player_stats['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
|
66 |
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
|
@@ -85,21 +92,22 @@ def init_baselines():
|
|
85 |
pick_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
|
86 |
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
|
87 |
'Trey Murphy III', 'Cam Thomas'], inplace=True)
|
88 |
-
|
|
|
89 |
|
90 |
def convert_df_to_csv(df):
|
91 |
return df.to_csv().encode('utf-8')
|
92 |
|
93 |
-
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
94 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
95 |
|
96 |
-
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
|
97 |
|
98 |
with tab1:
|
99 |
st.info(t_stamp)
|
100 |
if st.button("Reset Data", key='reset1'):
|
101 |
st.cache_data.clear()
|
102 |
-
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
103 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
104 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
105 |
team_frame = game_model
|
@@ -124,7 +132,7 @@ with tab2:
|
|
124 |
st.info(t_stamp)
|
125 |
if st.button("Reset Data", key='reset2'):
|
126 |
st.cache_data.clear()
|
127 |
-
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
128 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
129 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
130 |
if split_var1 == 'Specific Teams':
|
@@ -146,7 +154,7 @@ with tab3:
|
|
146 |
st.info(t_stamp)
|
147 |
if st.button("Reset Data", key='reset3'):
|
148 |
st.cache_data.clear()
|
149 |
-
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
150 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
151 |
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
152 |
if split_var5 == 'Specific Teams':
|
@@ -170,7 +178,7 @@ with tab4:
|
|
170 |
st.info(t_stamp)
|
171 |
if st.button("Reset Data", key='reset4'):
|
172 |
st.cache_data.clear()
|
173 |
-
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
174 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
175 |
col1, col2 = st.columns([1, 5])
|
176 |
|
@@ -315,7 +323,7 @@ with tab5:
|
|
315 |
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
316 |
if st.button("Reset Data/Load Data", key='reset5'):
|
317 |
st.cache_data.clear()
|
318 |
-
game_model, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
319 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
320 |
col1, col2 = st.columns([1, 5])
|
321 |
|
@@ -618,4 +626,24 @@ with tab5:
|
|
618 |
file_name='Nba_prop_proj.csv',
|
619 |
mime='text/csv',
|
620 |
key='prop_proj',
|
621 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
60 |
raw_display.replace('', np.nan, inplace=True)
|
61 |
raw_display.rename(columns={"Name": "Player"}, inplace = True)
|
62 |
+
|
63 |
+
raw_baselines = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV']]
|
64 |
+
raw_baselines = raw_baselines[raw_baselines['Minutes'] > 0]
|
65 |
+
raw_baselines['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
|
66 |
+
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
|
67 |
+
'Trey Murphy III', 'Cam Thomas'], inplace=True)
|
68 |
+
|
69 |
+
player_stats = raw_display[['Player', 'Position', 'Team', 'Opp', 'Minutes', '3P', 'Points', 'Rebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers', 'Fantasy']]
|
70 |
+
player_stats = player_stats[player_stats['Minutes'] > 0]
|
71 |
|
72 |
player_stats['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
|
73 |
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
|
|
|
92 |
pick_frame['Player'].replace(['Jaren Jackson', 'Nic Claxton', 'Jabari Smith', 'Lu Dort', 'Moe Wagner', 'Kyle Kuzma', 'Trey Murphy', 'Cameron Thomas'],
|
93 |
['Jaren Jackson Jr.', 'Nicolas Claxton', 'Jabari Smith Jr.', 'Luguentz Dort', 'Moritz Wagner', 'Kyle Kuzma Jr.',
|
94 |
'Trey Murphy III', 'Cam Thomas'], inplace=True)
|
95 |
+
|
96 |
+
return game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp
|
97 |
|
98 |
def convert_df_to_csv(df):
|
99 |
return df.to_csv().encode('utf-8')
|
100 |
|
101 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
102 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
103 |
|
104 |
+
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations", "Testing"])
|
105 |
|
106 |
with tab1:
|
107 |
st.info(t_stamp)
|
108 |
if st.button("Reset Data", key='reset1'):
|
109 |
st.cache_data.clear()
|
110 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
111 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
112 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
113 |
team_frame = game_model
|
|
|
132 |
st.info(t_stamp)
|
133 |
if st.button("Reset Data", key='reset2'):
|
134 |
st.cache_data.clear()
|
135 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
136 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
137 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
138 |
if split_var1 == 'Specific Teams':
|
|
|
154 |
st.info(t_stamp)
|
155 |
if st.button("Reset Data", key='reset3'):
|
156 |
st.cache_data.clear()
|
157 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
158 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
159 |
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
160 |
if split_var5 == 'Specific Teams':
|
|
|
178 |
st.info(t_stamp)
|
179 |
if st.button("Reset Data", key='reset4'):
|
180 |
st.cache_data.clear()
|
181 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
182 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
183 |
col1, col2 = st.columns([1, 5])
|
184 |
|
|
|
323 |
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
324 |
if st.button("Reset Data/Load Data", key='reset5'):
|
325 |
st.cache_data.clear()
|
326 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
327 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
328 |
col1, col2 = st.columns([1, 5])
|
329 |
|
|
|
626 |
file_name='Nba_prop_proj.csv',
|
627 |
mime='text/csv',
|
628 |
key='prop_proj',
|
629 |
+
)
|
630 |
+
with tab6:
|
631 |
+
st.info(t_stamp)
|
632 |
+
if st.button("Reset Data", key='reset6'):
|
633 |
+
st.cache_data.clear()
|
634 |
+
game_model, raw_baselines, player_stats, prop_frame, pick_frame, timestamp = init_baselines()
|
635 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
636 |
+
split_var6 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var6')
|
637 |
+
if split_var6 == 'Specific Teams':
|
638 |
+
team_var6 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var6')
|
639 |
+
elif split_var6 == 'All':
|
640 |
+
team_var6 = player_stats.Team.values.tolist()
|
641 |
+
raw_baselines_disp = raw_baselines[raw_baselines['Team'].isin(team_var6)]\
|
642 |
+
raw_stats_disp = raw_stats_disp.sort_values(by='Minutes', ascending=False)
|
643 |
+
st.data_editor(raw_stats_disp.format(precision=2), use_container_width = True)
|
644 |
+
st.download_button(
|
645 |
+
label="Export Customizable Model",
|
646 |
+
data=convert_df_to_csv(player_stats),
|
647 |
+
file_name='NBA_stats_export.csv',
|
648 |
+
mime='text/csv',
|
649 |
+
)
|