Taxt_to_speach / app.py
Musawir19's picture
Create app.py
59a82b8 verified
raw
history blame
1.19 kB
import streamlit as st
from speechbrain.pretrained import Tacotron2, HIFIGAN
from scipy.io.wavfile import write
# Load the TTS and Vocoder models
@st.cache_resource
def load_models():
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tts")
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder")
return tacotron2, hifi_gan
tacotron2, hifi_gan = load_models()
# Text-to-Speech function
def text_to_speech(text):
mel_output, mel_length, alignment = tacotron2.encode_text(text)
waveforms, _, _ = hifi_gan.decode_batch(mel_output)
audio_path = "output.wav"
write(audio_path, 22050, waveforms.squeeze(1).cpu().numpy())
return audio_path
# Streamlit App UI
st.title("Text-to-Speech Chatbot")
# Input text box
text = st.text_input("Enter text to convert to speech:", "")
if st.button("Generate Speech"):
if text.strip():
st.write("Generating speech...")
audio_file = text_to_speech(text)
st.audio(audio_file, format="audio/wav")
else:
st.warning("Please enter some text.")
st.write("Powered by SpeechBrain and Streamlit.")