Spaces:
Sleeping
Sleeping
import streamlit as st | |
from speechbrain.pretrained import Tacotron2, HIFIGAN | |
from scipy.io.wavfile import write | |
# Load the TTS and Vocoder models | |
def load_models(): | |
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tts") | |
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder") | |
return tacotron2, hifi_gan | |
tacotron2, hifi_gan = load_models() | |
# Text-to-Speech function | |
def text_to_speech(text): | |
mel_output, mel_length, alignment = tacotron2.encode_text(text) | |
waveforms, _, _ = hifi_gan.decode_batch(mel_output) | |
audio_path = "output.wav" | |
write(audio_path, 22050, waveforms.squeeze(1).cpu().numpy()) | |
return audio_path | |
# Streamlit App UI | |
st.title("Text-to-Speech Chatbot") | |
# Input text box | |
text = st.text_input("Enter text to convert to speech:", "") | |
if st.button("Generate Speech"): | |
if text.strip(): | |
st.write("Generating speech...") | |
audio_file = text_to_speech(text) | |
st.audio(audio_file, format="audio/wav") | |
else: | |
st.warning("Please enter some text.") | |
st.write("Powered by SpeechBrain and Streamlit.") | |