import torch from torch import nn from typing import Any class BatchNormConv1d(nn.Module): """ A nn.Conv1d followed by an optional activation function, and nn.BatchNorm1d """ def __init__( self, in_dim: int, out_dim: int, kernel_size: int, stride: int, padding: int, activation: Any = None, ): super().__init__() self.conv1d = nn.Conv1d( in_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding, bias=False, ) self.bn = nn.BatchNorm1d(out_dim) self.activation = activation def forward(self, x: Any): x = self.conv1d(x) if self.activation is not None: x = self.activation(x) return self.bn(x) class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super().__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear'): super().__init__() if padding is None: assert(kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): conv_signal = self.conv(signal) return conv_signal