Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,61 @@
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
-
|
4 |
-
|
5 |
-
import shutil
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
# Define paths and parameters
|
10 |
-
weights_path = 'yolo/yolov7-main/runs/train/best.pt'
|
11 |
-
img_size = 640
|
12 |
-
conf = 0.20
|
13 |
-
|
14 |
-
output_folder = 'out/fixed_folder/'
|
15 |
-
|
16 |
-
# Ensure folders exist
|
17 |
-
os.makedirs(source_folder, exist_ok=True)
|
18 |
-
os.makedirs(output_folder, exist_ok=True)
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
async def root():
|
23 |
-
return PlainTextResponse("Welcome to the YOLOv7 Object Detection API. Use the /detect endpoint to upload an image.")
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
async def favicon():
|
28 |
-
return PlainTextResponse("", status_code=204)
|
29 |
|
30 |
-
# Define the detect function
|
31 |
-
def detect_and_crop(image_path: str):
|
32 |
# Run the detection command
|
33 |
command = [
|
34 |
'python', 'yolo/yolov7-main/detect.py',
|
35 |
'--weights', weights_path,
|
36 |
'--conf-thres', str(conf),
|
37 |
'--img-size', str(img_size),
|
38 |
-
'--source',
|
39 |
'--project', 'out/', # Output directory
|
40 |
'--name', 'fixed_folder', # Folder name for results
|
41 |
'--exist-ok' # Don't increment folder name
|
42 |
]
|
43 |
|
44 |
-
# Execute the command
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
for file_name in output_files:
|
53 |
-
if file_name.endswith(".jpg") or file_name.endswith(".jpeg") or file_name.endswith(".png"):
|
54 |
-
output_image_path = os.path.join(output_folder, file_name)
|
55 |
-
break
|
56 |
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
63 |
-
@app.post("/detect")
|
64 |
-
async def detect_endpoint(file: UploadFile = File(...)):
|
65 |
-
# Save the uploaded file to the source folder
|
66 |
-
input_image_path = os.path.join(source_folder, 'input_image.jpg')
|
67 |
-
with open(input_image_path, "wb") as buffer:
|
68 |
-
shutil.copyfileobj(file.file, buffer)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
3 |
import subprocess
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
|
|
6 |
|
7 |
+
# Define the detect function
|
8 |
+
def detect_and_crop(input_image):
|
9 |
+
# Define paths and parameters
|
10 |
+
weights_path = 'yolo/yolov7-main/runs/train/best.pt'
|
11 |
+
img_size = 640
|
12 |
+
conf = 0.20
|
13 |
+
source = 'dataset/images/train/' # Folder for input images
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Ensure the input image folder exists
|
16 |
+
os.makedirs(source, exist_ok=True)
|
|
|
|
|
17 |
|
18 |
+
# Save the input image to the source directory
|
19 |
+
input_image.save(os.path.join(source, 'input_image.jpg'))
|
|
|
|
|
20 |
|
|
|
|
|
21 |
# Run the detection command
|
22 |
command = [
|
23 |
'python', 'yolo/yolov7-main/detect.py',
|
24 |
'--weights', weights_path,
|
25 |
'--conf-thres', str(conf),
|
26 |
'--img-size', str(img_size),
|
27 |
+
'--source', os.path.join(source, 'input_image.jpg'),
|
28 |
'--project', 'out/', # Output directory
|
29 |
'--name', 'fixed_folder', # Folder name for results
|
30 |
'--exist-ok' # Don't increment folder name
|
31 |
]
|
32 |
|
33 |
+
# Execute the command
|
34 |
+
subprocess.run(command)
|
35 |
+
|
36 |
+
# Load the result image
|
37 |
+
output_image_path = 'out/fixed_folder/input_image_upscaled.jpg'
|
38 |
|
39 |
+
# Check if the image exists
|
40 |
+
if not os.path.exists(output_image_path):
|
41 |
+
return "No output image found."
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Read the output image
|
44 |
+
output_image = cv2.imread(output_image_path)
|
45 |
|
46 |
+
# Convert BGR (OpenCV format) to RGB (Gradio format)
|
47 |
+
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
48 |
|
49 |
+
return output_image
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Set up the Gradio interface
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=detect_and_crop,
|
54 |
+
inputs=gr.Image(type="pil"), # Input type
|
55 |
+
outputs=gr.Image(type="numpy"), # Output type
|
56 |
+
title="YOLOv7 Object Detection",
|
57 |
+
description="Upload an image for object detection and cropping."
|
58 |
+
)
|
59 |
|
60 |
+
# Launch the app
|
61 |
+
iface.launch()
|