Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import json | |
import torch | |
import torch.nn as nn | |
import clip | |
import pytorch_lightning as pl | |
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize | |
from PIL import Image | |
from timm.models.vision_transformer import resize_pos_embed | |
from cog import BasePredictor, Path, Input | |
import captioning.utils.opts as opts | |
import captioning.models as models | |
import captioning.utils.misc as utils | |
class Predictor(BasePredictor): | |
def setup(self): | |
import __main__ | |
__main__.ModelCheckpoint = pl.callbacks.ModelCheckpoint | |
self.device = torch.device("cuda:0") | |
self.dict_json = json.load(open("./data/cocotalk.json")) | |
self.ix_to_word = self.dict_json["ix_to_word"] | |
self.vocab_size = len(self.ix_to_word) | |
self.clip_model, self.clip_transform = clip.load( | |
"RN50", jit=False, device=self.device | |
) | |
self.preprocess = Compose( | |
[ | |
Resize((448, 448), interpolation=Image.BICUBIC), | |
CenterCrop((448, 448)), | |
ToTensor(), | |
] | |
) | |
def predict( | |
self, | |
image: Path = Input( | |
description="Input image.", | |
), | |
reward: str = Input( | |
choices=["mle", "cider", "clips", "cider_clips", "clips_grammar"], | |
default="clips_grammar", | |
description="Choose a reward criterion.", | |
), | |
) -> str: | |
self.device = torch.device("cuda:0") | |
self.dict_json = json.load(open("./data/cocotalk.json")) | |
self.ix_to_word = self.dict_json["ix_to_word"] | |
self.vocab_size = len(self.ix_to_word) | |
self.clip_model, self.clip_transform = clip.load( | |
"RN50", jit=False, device=self.device | |
) | |
self.preprocess = Compose( | |
[ | |
Resize((448, 448), interpolation=Image.BICUBIC), | |
CenterCrop((448, 448)), | |
ToTensor(), | |
] | |
) | |
cfg = ( | |
f"configs/phase1/clipRN50_{reward}.yml" | |
if reward == "mle" | |
else f"configs/phase2/clipRN50_{reward}.yml" | |
) | |
print("Loading cfg from", cfg) | |
opt = opts.parse_opt(parse=False, cfg=cfg) | |
print("vocab size:", self.vocab_size) | |
seq_length = 1 | |
opt.vocab_size = self.vocab_size | |
opt.seq_length = seq_length | |
opt.batch_size = 1 | |
opt.vocab = self.ix_to_word | |
print(opt.caption_model) | |
model = models.setup(opt) | |
del opt.vocab | |
ckpt_path = opt.checkpoint_path + "-last.ckpt" | |
print("Loading checkpoint from", ckpt_path) | |
raw_state_dict = torch.load(ckpt_path, map_location=self.device) | |
strict = True | |
state_dict = raw_state_dict["state_dict"] | |
if "_vocab" in state_dict: | |
model.vocab = utils.deserialize(state_dict["_vocab"]) | |
del state_dict["_vocab"] | |
elif strict: | |
raise KeyError | |
if "_opt" in state_dict: | |
saved_model_opt = utils.deserialize(state_dict["_opt"]) | |
del state_dict["_opt"] | |
# Make sure the saved opt is compatible with the curren topt | |
need_be_same = ["caption_model", "rnn_type", "rnn_size", "num_layers"] | |
for checkme in need_be_same: | |
if ( | |
getattr(saved_model_opt, checkme) | |
in [ | |
"updown", | |
"topdown", | |
] | |
and getattr(opt, checkme) in ["updown", "topdown"] | |
): | |
continue | |
assert getattr(saved_model_opt, checkme) == getattr(opt, checkme), ( | |
"Command line argument and saved model disagree on '%s' " % checkme | |
) | |
elif strict: | |
raise KeyError | |
res = model.load_state_dict(state_dict, strict) | |
print(res) | |
model = model.to(self.device) | |
model.eval() | |
image_mean = ( | |
torch.Tensor([0.48145466, 0.4578275, 0.40821073]) | |
.to(self.device) | |
.reshape(3, 1, 1) | |
) | |
image_std = ( | |
torch.Tensor([0.26862954, 0.26130258, 0.27577711]) | |
.to(self.device) | |
.reshape(3, 1, 1) | |
) | |
num_patches = 196 # 600 * 1000 // 32 // 32 | |
pos_embed = nn.Parameter( | |
torch.zeros( | |
1, | |
num_patches + 1, | |
self.clip_model.visual.attnpool.positional_embedding.shape[-1], | |
device=self.device, | |
), | |
) | |
pos_embed.weight = resize_pos_embed( | |
self.clip_model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed | |
) | |
self.clip_model.visual.attnpool.positional_embedding = pos_embed | |
with torch.no_grad(): | |
image = self.preprocess(Image.open(str(image)).convert("RGB")) | |
image = torch.tensor(np.stack([image])).to(self.device) | |
image -= image_mean | |
image /= image_std | |
tmp_att, tmp_fc = self.clip_model.encode_image(image) | |
tmp_att = tmp_att[0].permute(1, 2, 0) | |
att_feat = tmp_att | |
# Inference configurations | |
eval_kwargs = {} | |
eval_kwargs.update(vars(opt)) | |
with torch.no_grad(): | |
fc_feats = torch.zeros((1, 0)).to(self.device) | |
att_feats = att_feat.view(1, 196, 2048).float().to(self.device) | |
att_masks = None | |
# forward the model to also get generated samples for each image | |
# Only leave one feature for each image, in case duplicate sample | |
tmp_eval_kwargs = eval_kwargs.copy() | |
tmp_eval_kwargs.update({"sample_n": 1}) | |
seq, seq_logprobs = model( | |
fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode="sample" | |
) | |
seq = seq.data | |
sents = utils.decode_sequence(model.vocab, seq) | |
return sents[0] | |