CLIP-Caption-Reward / scripts /make_bu_data.py
akhaliq's picture
akhaliq HF staff
add files
c80917c
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import base64
import numpy as np
import csv
import sys
import zlib
import time
import mmap
import argparse
parser = argparse.ArgumentParser()
# output_dir
parser.add_argument('--downloaded_feats', default='data/bu_data', help='downloaded feature directory')
parser.add_argument('--output_dir', default='data/cocobu', help='output feature files')
args = parser.parse_args()
csv.field_size_limit(sys.maxsize)
FIELDNAMES = ['image_id', 'image_w','image_h','num_boxes', 'boxes', 'features']
infiles = ['trainval/karpathy_test_resnet101_faster_rcnn_genome.tsv',
'trainval/karpathy_val_resnet101_faster_rcnn_genome.tsv',\
'trainval/karpathy_train_resnet101_faster_rcnn_genome.tsv.0', \
'trainval/karpathy_train_resnet101_faster_rcnn_genome.tsv.1']
os.makedirs(args.output_dir+'_att')
os.makedirs(args.output_dir+'_fc')
os.makedirs(args.output_dir+'_box')
for infile in infiles:
print('Reading ' + infile)
with open(os.path.join(args.downloaded_feats, infile), "r") as tsv_in_file:
reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames = FIELDNAMES)
for item in reader:
item['image_id'] = int(item['image_id'])
item['num_boxes'] = int(item['num_boxes'])
for field in ['boxes', 'features']:
item[field] = np.frombuffer(base64.decodestring(item[field].encode('ascii')),
dtype=np.float32).reshape((item['num_boxes'],-1))
np.savez_compressed(os.path.join(args.output_dir+'_att', str(item['image_id'])), feat=item['features'])
np.save(os.path.join(args.output_dir+'_fc', str(item['image_id'])), item['features'].mean(0))
np.save(os.path.join(args.output_dir+'_box', str(item['image_id'])), item['boxes'])