import pandas as pd class PaperList: def __init__(self) -> None: self.table = pd.read_csv("papers.csv") self._preprcess_table() self.table_header = """ <tr> <td width="50%">Paper</td> <td width="22%">Authors</td> <td width="4%">pdf</td> <td width="4%">category</td> <td width="4%">arXiv</td> <td width="4%">GitHub</td> <td width="4%">HF Spaces</td> <td width="4%">HF Models</td> <td width="4%">HF Datasets</td> </tr>""" def _preprcess_table(self) -> None: self.table["title_lowercase"] = self.table.title.str.lower() rows = [] for row in self.table.itertuples(): paper = f'<a href="{row.url}" target="_blank">{row.title}</a>' if isinstance(row.url, str) else row.title pdf = f'<a href="{row.pdf}" target="_blank">pdf</a>' if isinstance(row.pdf, str) else "" arxiv = f'<a href="{row.arxiv}" target="_blank">arXiv</a>' if isinstance(row.arxiv, str) else "" github = f'<a href="{row.github}" target="_blank">GitHub</a>' if isinstance(row.github, str) else "" hf_space = f'<a href="{row.hf_space}" target="_blank">Space</a>' if isinstance(row.hf_space, str) else "" hf_model = f'<a href="{row.hf_model}" target="_blank">Model</a>' if isinstance(row.hf_model, str) else "" hf_dataset = ( f'<a href="{row.hf_dataset}" target="_blank">Dataset</a>' if isinstance(row.hf_dataset, str) else "" ) new_row = f""" <tr> <td>{paper}</td> <td>{row.authors}</td> <td>{pdf}</td> <td>{row.category}</td> <td>{arxiv}</td> <td>{github}</td> <td>{hf_space}</td> <td>{hf_model}</td> <td>{hf_dataset}</td> </tr>""" rows.append(new_row) self.table["html_table_content"] = rows def render( self, search_query: str, case_sensitive: bool, filter_names: list[str], paper_categories: list[str] ) -> tuple[int, str]: df = self.table if search_query: if case_sensitive: df = df[df.title.str.contains(search_query)] else: df = df[df.title_lowercase.str.contains(search_query.lower())] has_arxiv = "arXiv" in filter_names has_github = "GitHub" in filter_names has_hf_space = "HF Space" in filter_names has_hf_model = "HF Model" in filter_names has_hf_dataset = "HF Dataset" in filter_names df = self.filter_table(df, has_arxiv, has_github, has_hf_space, has_hf_model, has_hf_dataset, paper_categories) return len(df), self.to_html(df, self.table_header) @staticmethod def filter_table( df: pd.DataFrame, has_arxiv: bool, has_github: bool, has_hf_space: bool, has_hf_model: bool, has_hf_dataset: bool, paper_categories: list[str], ) -> pd.DataFrame: if has_arxiv: df = df[~df.arxiv.isna()] if has_github: df = df[~df.github.isna()] if has_hf_space: df = df[~df.hf_space.isna()] if has_hf_model: df = df[~df.hf_model.isna()] if has_hf_dataset: df = df[~df.hf_dataset.isna()] return df[df.category.isin(set(paper_categories))] @staticmethod def to_html(df: pd.DataFrame, table_header: str) -> str: table_data = "".join(df.html_table_content) return f""" <table> {table_header} {table_data} </table>"""