File size: 25,369 Bytes
91fad79
f72c98d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aecf54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
 
0aecf54
 
 
91fad79
 
 
 
 
f72c98d
91fad79
0aecf54
91fad79
 
f72c98d
 
0aecf54
f72c98d
91fad79
 
 
 
 
 
 
f72c98d
68b7587
91fad79
f72c98d
 
a941cf4
0aecf54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e855f8
 
f72c98d
 
2e855f8
f72c98d
2e855f8
 
f72c98d
 
 
 
 
 
 
2e855f8
 
f72c98d
 
 
2e855f8
91fad79
2e855f8
f72c98d
91fad79
2e855f8
f72c98d
a941cf4
f72c98d
a941cf4
0aecf54
 
2e855f8
f72c98d
 
 
 
 
91fad79
2e855f8
0aecf54
 
f72c98d
 
2e855f8
f72c98d
 
 
 
 
2e855f8
f72c98d
 
 
 
 
0aecf54
f72c98d
2e855f8
a1a9efe
0aecf54
 
835947d
 
 
 
 
 
0aecf54
835947d
 
 
 
0aecf54
 
 
f72c98d
0aecf54
 
f72c98d
0aecf54
 
 
f72c98d
0aecf54
 
f72c98d
0aecf54
 
f72c98d
0aecf54
 
f72c98d
0aecf54
 
 
 
 
 
 
 
 
 
 
 
2e855f8
0aecf54
 
2e855f8
f72c98d
2e855f8
f72c98d
2e855f8
f72c98d
2e855f8
f72c98d
2e855f8
91fad79
0aecf54
91fad79
2e855f8
 
91fad79
2e855f8
 
0aecf54
2e855f8
91fad79
2e855f8
 
 
 
 
 
91fad79
0aecf54
91fad79
0aecf54
f72c98d
0aecf54
 
2e855f8
f72c98d
91fad79
2e855f8
91fad79
2e855f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

# from ragatouille import RAGPretrainedModel
# import subprocess
# import json
# import spaces
# import firebase_admin
# from firebase_admin import credentials, firestore
# import logging
# from pathlib import Path
# from time import perf_counter
# from datetime import datetime
# import gradio as gr
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from sentence_transformers import CrossEncoder
# from huggingface_hub import InferenceClient
# from os import getenv

# from backend.query_llm import generate_hf, generate_openai
# from backend.semantic_search import table, retriever
# from huggingface_hub import InferenceClient


# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# proj_dir = Path(__file__).parent
# # Setting up the logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
# # Set up the template environment with the templates directory
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# # Load the templates directly from the environment
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')

# def system_instructions(question_difficulty, topic,documents_str):
#     return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty  about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""


# RAG_db=gr.State()

# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
#     def load_model():
#         RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
#         RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
#         return 'Ready to Go!!'
#     with gr.Column(scale=4):
#         gr.HTML("""
#     <center>
#       <h1><span style="color: purple;">ADWITIYA</span> Customs Manual  Quizbot</h1>
#       <h2>Generative AI-powered Capacity building for Training Officers</h2>
#       <i>โš ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โš ๏ธ</i>
#     </center>
#     """)
#         #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
#     with gr.Column(scale=2):
#         load_btn = gr.Button("Click to Load!๐Ÿš€")
#         load_text=gr.Textbox()
#         load_btn.click(load_model,[],load_text)
        
   
#     topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")

#     with gr.Row():
#         radio = gr.Radio(
#             ["easy", "average", "hard"], label="How difficult should the quiz be?"
#         )


#     generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
#     quiz_msg=gr.Textbox()

#     question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
#         visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
#         visible=False), gr.Radio(visible=False), gr.Radio(visible=False)]

#     print(question_radios)

#     @spaces.GPU
#     @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz")
#     def generate_quiz(question_difficulty, topic):
#         top_k_rank=10
#         RAG_db_=RAG_db.value
#         documents_full=RAG_db_.search(topic,k=top_k_rank)
#         gr.Warning('Generation of Quiz may take 1 to 2  minute. Pls wait')
        

#         generate_kwargs = dict(
#             temperature=0.2,
#             max_new_tokens=4000,
#             top_p=0.95,
#             repetition_penalty=1.0,
#             do_sample=True,
#             seed=42,
#         )
#         question_radio_list = []
#         count=0
#         while count<=3:
#             try:
#                 documents=[item['content'] for item in documents_full]
#                 document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
#                 documents_str='\n'.join(document_summaries)
#                 formatted_prompt = system_instructions(
#                     question_difficulty, topic,documents_str)
#                 print(formatted_prompt)
#                 pre_prompt = [
#                     {"role": "system", "content": formatted_prompt}
#                 ]
#                 response = client.text_generation(
#                     formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
#                 )
#                 output_json = json.loads(f"{response}")
                
        
#                 print(response)
#                 print('output json', output_json)
        
#                 global quiz_data
        
#                 quiz_data = output_json
        
                
        
#                 for question_num in range(1, 11):
#                     question_key = f"Q{question_num}"
#                     answer_key = f"A{question_num}"
        
#                     question = quiz_data.get(question_key)
#                     answer = quiz_data.get(quiz_data.get(answer_key))
        
#                     if not question or not answer:
#                         continue
        
#                     choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
#                     choice_list = []
#                     for choice_key in choice_keys:
#                         choice = quiz_data.get(choice_key, "Choice not found")
#                         choice_list.append(f"{choice}")
        
#                     radio = gr.Radio(choices=choice_list, label=question,
#                                      visible=True, interactive=True)
        
#                     question_radio_list.append(radio)
#                 if len(question_radio_list)==10:
#                     break
#                 else:
#                     print('10 questions not generated . So trying again!')
#                     count+=1
#                     continue
#             except Exception as e:
#                 count+=1
#                 print(f"Exception occurred: {e}")
#                 if count==3:
#                     print('Retry exhausted')
#                     gr.Warning('Sorry. Pls try with another topic !')
#                 else:
#                     print(f"Trying again..{count} time...please wait")
#                     continue

#         print('Question radio list ' , question_radio_list)

#         return ['Quiz Generated!']+ question_radio_list

#     check_button = gr.Button("Check Score")

#     score_textbox = gr.Markdown()

#     @check_button.click(inputs=question_radios, outputs=score_textbox)
#     def compare_answers(*user_answers):
#         user_anwser_list = []
#         user_anwser_list = user_answers

#         answers_list = []

#         for question_num in range(1, 20):
#             answer_key = f"A{question_num}"
#             answer = quiz_data.get(quiz_data.get(answer_key))
#             if not answer:
#                 break
#             answers_list.append(answer)

#         score = 0

#         for item in user_anwser_list:
#             if item in answers_list:
#                 score += 1
#         if score>5:
#              message = f"### Good ! You got {score} over 10!"
#         elif score>7:
#              message = f"### Excellent ! You got {score} over 10!"
#         else:
#              message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !"

#         return message


# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)


# ################################################
# from ragatouille import RAGPretrainedModel
# import subprocess
# import json
# import spaces
# import firebase_admin
# from firebase_admin import credentials, firestore
# import logging
# from pathlib import Path
# from time import perf_counter
# from datetime import datetime
# import gradio as gr
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from sentence_transformers import CrossEncoder
# from os import getenv
# from backend.query_llm import generate_hf, generate_openai
# from backend.semantic_search import table, retriever
# from gradio_client import Client  # Modified here

# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# proj_dir = Path(__file__).parent

# # Setting up the logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # Replace Mixtral client with Qwen Client
# client = Client("Qwen/Qwen1.5-110B-Chat-demo")  # Modified here

# # Set up the template environment with the templates directory
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# # Load the templates directly from the environment
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')

# def system_instructions(question_difficulty, topic, documents_str):
#     return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]"""

# # RA
# RAG_db = gr.State()

# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
#     def load_model():
#         RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
#         RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
#         return 'Ready to Go!!'

#     with gr.Column(scale=4):
#         gr.HTML("""
#         <center>
#             <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
#             <h2>Generative AI-powered Capacity building for Training Officers</h2>
#             <i>โš ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โš ๏ธ</i>
#         </center>
#         """)

#     with gr.Column(scale=2):
#         load_btn = gr.Button("Click to Load!๐Ÿš€")
#         load_text = gr.Textbox()
#         load_btn.click(load_model, [], load_text)

#     topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")

#     with gr.Row():
#         radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")

#     generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
#     quiz_msg = gr.Textbox()

#     question_radios = [gr.Radio(visible=False) for _ in range(10)]

#     @spaces.GPU
#     @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios, api_name="generate_quiz")
#     def generate_quiz(question_difficulty, topic):
#         top_k_rank = 10
#         RAG_db_ = RAG_db.value
#         documents_full = RAG_db_.search(topic, k=top_k_rank)

#         gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.')

#         question_radio_list = []
#         count = 0
#         while count <= 3:
#             try:
#                 documents = [item['content'] for item in documents_full]
#                 document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)]
#                 documents_str = '\n'.join(document_summaries)
#                 formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
                
#                 print(formatted_prompt)

#                 # Use Qwen Client for quiz generation
#                 response = client.predict(
#                     query=formatted_prompt,
#                     history=[],
#                     system="You are a helpful assistant.",  # Modified to match Qwen's API
#                     api_name="/model_chat"
#                 )
#                 print(response)
#                 response1=response[1][0][1]
#                 # Find the first and last curly braces
#                 start_index = response1.find('{')
#                 end_index = response1.rfind('}')
                
#                 # Extract only the JSON part
#                 if start_index != -1 and end_index != -1:
#                     cleaned_response = response1[start_index:end_index + 1]  # Include the last closing brace
                
#                     # Try parsing the cleaned JSON
#                     try:
#                         output_json = json.loads(cleaned_response)
#                         print('Parsed JSON:', output_json)  # Successfully print the dictionary
#                     except json.JSONDecodeError as e:
#                         print(f"Failed to decode JSON: {e}")
#                 else:
#                     print("No valid JSON found in the response.")
#                 # output_json = json.loads(f"{response}")
#                 # print('output json', output_json)
                  
#                 global quiz_data
#                 quiz_data = output_json

#                 for question_num in range(1, 11):
#                     question_key = f"Q{question_num}"
#                     answer_key = f"A{question_num}"

#                     question = quiz_data.get(question_key)
#                     answer = quiz_data.get(quiz_data.get(answer_key))

#                     if not question or not answer:
#                         continue

#                     choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
#                     choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]

#                     radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
#                     question_radio_list.append(radio)
#                 print('question_radio_list',question_radio_list)

#                 if len(question_radio_list) == 10:
#                     break
#                 else:
#                     print('10 questions not generated. Trying again!')
#                     count += 1
#                     continue
#             except Exception as e:
#                 count += 1
#                 print(f"Exception occurred: {e}")
#                 if count == 3:
#                     print('Retry exhausted')
#                     gr.Warning('Sorry. Please try with another topic!')
#                 else:
#                     print(f"Trying again.. {count} time... please wait")
#                     continue

#         return ['Quiz Generated!'] + question_radio_list

#     check_button = gr.Button("Check Score")
#     score_textbox = gr.Markdown()

#     @check_button.click(inputs=question_radios, outputs=score_textbox)
#     def compare_answers(*user_answers):
#         user_anwser_list = list(user_answers)
#         answers_list = []

#         for question_num in range(1, 20):
#             answer_key = f"A{question_num}"
#             answer = quiz_data.get(quiz_data.get(answer_key))
#             if not answer:
#                 break
#             answers_list.append(answer)

#         score = sum(1 for item in user_anwser_list if item in answers_list)

#         if score > 5:
#             message = f"### Good! You got {score} out of 10!"
#         elif score > 7:
#             message = f"### Excellent! You got {score} out of 10!"
#         else:
#             message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"

#         return message

# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)
##############??????????????????????????????
import pandas as pd
import json
import gradio as gr
from pathlib import Path
from ragatouille import RAGPretrainedModel
from gradio_client import Client
from jinja2 import Environment, FileSystemLoader

VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path(__file__).parent

# Setting up the logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Replace Mixtral client with Qwen Client
client = Client("Qwen/Qwen1.5-110B-Chat-demo")

# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')

def system_instructions(question_difficulty, topic, documents_str):
    return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]"""

# RA
RAG_db = gr.State()

def json_to_excel(output_json):
    # Initialize list for DataFrame
    data = []

    for i in range(1, 11):  # Assuming there are 10 questions
        question_key = f"Q{i}"
        answer_key = f"A{i}"

        question = output_json.get(question_key, '')
        correct_answer_key = output_json.get(answer_key, '')
        correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
        
        # Extract options
        option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
        options = [output_json.get(key, '') for key in option_keys]
        
        # Add data row
        data.append([
            question,                     # Question Text
            "Multiple Choice",            # Question Type
            options[0],                   # Option 1
            options[1],                   # Option 2
            options[2] if len(options) > 2 else '',  # Option 3
            options[3] if len(options) > 3 else '',  # Option 4
            options[4] if len(options) > 4 else '',  # Option 5
            correct_answer,               # Correct Answer
            30,                           # Time in seconds
            ''                            # Image Link
        ])

    # Create DataFrame
    df = pd.DataFrame(data, columns=[
        "Question Text",
        "Question Type",
        "Option 1",
        "Option 2",
        "Option 3",
        "Option 4",
        "Option 5",
        "Correct Answer",
        "Time in seconds",
        "Image Link"
    ])

    # Save to Excel file
    excel_path = proj_dir / "quiz_questions.xlsx"
    df.to_excel(excel_path, index=False)
    return excel_path

with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
    def load_model():
        RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
        RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
        return 'Ready to Go!!'

    with gr.Column(scale=4):
        gr.HTML("""
        <center>
            <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
            <h2>Generative AI-powered Capacity building for Training Officers</h2>
            <i>โš ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โš ๏ธ</i>
        </center>
        """)

    with gr.Column(scale=2):
        load_btn = gr.Button("Click to Load!๐Ÿš€")
        load_text = gr.Textbox()
        load_btn.click(load_model, [], load_text)

    topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")

    with gr.Row():
        radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")

    generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
    quiz_msg = gr.Textbox()

    question_radios = [gr.Radio(visible=False) for _ in range(10)]

    @gr.dependencies.GPU
    @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")], api_name="generate_quiz")
    def generate_quiz(question_difficulty, topic):
        top_k_rank = 10
        RAG_db_ = RAG_db.value
        documents_full = RAG_db_.search(topic, k=top_k_rank)

        gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.')

        question_radio_list = []
        excel_file = None

        count = 0
        while count <= 3:
            try:
                documents = [item['content'] for item in documents_full]
                document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)]
                documents_str = '\n'.join(document_summaries)
                formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
                
                print(formatted_prompt)

                # Use Qwen Client for quiz generation
                response = client.predict(
                    query=formatted_prompt,
                    history=[],
                    system="You are a helpful assistant.", 
                    api_name="/model_chat"
                )
                print(response)
                response1 = response[1][0][1]

                # Find the first and last curly braces
                start_index = response1.find('{')
                end_index = response1.rfind('}')
                
                # Extract only the JSON part
                if start_index != -1 and end_index != -1:
                    cleaned_response = response1[start_index:end_index + 1]
                
                    # Try parsing the cleaned JSON
                    try:
                        output_json = json.loads(cleaned_response)
                        print('Parsed JSON:', output_json) 
                        global quiz_data
                        quiz_data = output_json

                        # Generate the Excel file
                        excel_file = json_to_excel(output_json)

                        for question_num in range(1, 11):
                            question_key = f"Q{question_num}"
                            answer_key = f"A{question_num}"

                            question = quiz_data.get(question_key)
                            answer = quiz_data.get(quiz_data.get(answer_key))

                            if not question or not answer:
                                continue

                            choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
                            choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]

                            radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
                            question_radio_list.append(radio)
                        print('question_radio_list', question_radio_list)

                        if len(question_radio_list) == 10:
                            break
                        else:
                            print('10 questions not generated. Trying again!')
                            count += 1
                            continue
                    except json.JSONDecodeError as e:
                        print(f"Failed to decode JSON: {e}")
                else:
                    print("No valid JSON found in the response.")
                  
            except Exception as e:
                count += 1
                print(f"Exception occurred: {e}")
                if count == 3:
                    print('Retry exhausted')
                    gr.Warning('Sorry. Please try with another topic!')
                else:
                    print(f"Trying again.. {count} time... please wait")
                    continue

        return ['Quiz Generated!'] + question_radio_list + [excel_file]

    check_button = gr.Button("Check Score")
    score_textbox = gr.Markdown()

    @check_button.click(inputs=question_radios, outputs=score_textbox)
    def compare_answers(*user_answers):
        user_answer_list = list(user_answers)
        answers_list = []

        for question_num in range(1, 20):
            answer_key = f"A{question_num}"
            answer = quiz_data.get(quiz_data.get(answer_key))
            if not answer:
                break
            answers_list.append(answer)

        score = sum(1 for item in user_answer_list if item in answers_list)

        if score > 7:
            message = f"### Excellent! You got {score} out of 10!"
        elif score > 5:
            message = f"### Good! You got {score} out of 10!"
        else:
            message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"

        return message

QUIZBOT.queue()
QUIZBOT.launch(debug=True)