Spaces:
Running
Running
File size: 25,369 Bytes
91fad79 f72c98d 0aecf54 91fad79 0aecf54 91fad79 f72c98d 91fad79 0aecf54 91fad79 f72c98d 0aecf54 f72c98d 91fad79 f72c98d 68b7587 91fad79 f72c98d a941cf4 0aecf54 2e855f8 f72c98d 2e855f8 f72c98d 2e855f8 f72c98d 2e855f8 f72c98d 2e855f8 91fad79 2e855f8 f72c98d 91fad79 2e855f8 f72c98d a941cf4 f72c98d a941cf4 0aecf54 2e855f8 f72c98d 91fad79 2e855f8 0aecf54 f72c98d 2e855f8 f72c98d 2e855f8 f72c98d 0aecf54 f72c98d 2e855f8 a1a9efe 0aecf54 835947d 0aecf54 835947d 0aecf54 f72c98d 0aecf54 f72c98d 0aecf54 f72c98d 0aecf54 f72c98d 0aecf54 f72c98d 0aecf54 f72c98d 0aecf54 2e855f8 0aecf54 2e855f8 f72c98d 2e855f8 f72c98d 2e855f8 f72c98d 2e855f8 f72c98d 2e855f8 91fad79 0aecf54 91fad79 2e855f8 91fad79 2e855f8 0aecf54 2e855f8 91fad79 2e855f8 91fad79 0aecf54 91fad79 0aecf54 f72c98d 0aecf54 2e855f8 f72c98d 91fad79 2e855f8 91fad79 2e855f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
# from ragatouille import RAGPretrainedModel
# import subprocess
# import json
# import spaces
# import firebase_admin
# from firebase_admin import credentials, firestore
# import logging
# from pathlib import Path
# from time import perf_counter
# from datetime import datetime
# import gradio as gr
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from sentence_transformers import CrossEncoder
# from huggingface_hub import InferenceClient
# from os import getenv
# from backend.query_llm import generate_hf, generate_openai
# from backend.semantic_search import table, retriever
# from huggingface_hub import InferenceClient
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# proj_dir = Path(__file__).parent
# # Setting up the logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
# # Set up the template environment with the templates directory
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# # Load the templates directly from the environment
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')
# def system_instructions(question_difficulty, topic,documents_str):
# return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""
# RAG_db=gr.State()
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
# def load_model():
# RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# return 'Ready to Go!!'
# with gr.Column(scale=4):
# gr.HTML("""
# <center>
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
# <h2>Generative AI-powered Capacity building for Training Officers</h2>
# <i>โ ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โ ๏ธ</i>
# </center>
# """)
# #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
# with gr.Column(scale=2):
# load_btn = gr.Button("Click to Load!๐")
# load_text=gr.Textbox()
# load_btn.click(load_model,[],load_text)
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
# with gr.Row():
# radio = gr.Radio(
# ["easy", "average", "hard"], label="How difficult should the quiz be?"
# )
# generate_quiz_btn = gr.Button("Generate Quiz!๐")
# quiz_msg=gr.Textbox()
# question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
# visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
# visible=False), gr.Radio(visible=False), gr.Radio(visible=False)]
# print(question_radios)
# @spaces.GPU
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz")
# def generate_quiz(question_difficulty, topic):
# top_k_rank=10
# RAG_db_=RAG_db.value
# documents_full=RAG_db_.search(topic,k=top_k_rank)
# gr.Warning('Generation of Quiz may take 1 to 2 minute. Pls wait')
# generate_kwargs = dict(
# temperature=0.2,
# max_new_tokens=4000,
# top_p=0.95,
# repetition_penalty=1.0,
# do_sample=True,
# seed=42,
# )
# question_radio_list = []
# count=0
# while count<=3:
# try:
# documents=[item['content'] for item in documents_full]
# document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
# documents_str='\n'.join(document_summaries)
# formatted_prompt = system_instructions(
# question_difficulty, topic,documents_str)
# print(formatted_prompt)
# pre_prompt = [
# {"role": "system", "content": formatted_prompt}
# ]
# response = client.text_generation(
# formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
# )
# output_json = json.loads(f"{response}")
# print(response)
# print('output json', output_json)
# global quiz_data
# quiz_data = output_json
# for question_num in range(1, 11):
# question_key = f"Q{question_num}"
# answer_key = f"A{question_num}"
# question = quiz_data.get(question_key)
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not question or not answer:
# continue
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# choice_list = []
# for choice_key in choice_keys:
# choice = quiz_data.get(choice_key, "Choice not found")
# choice_list.append(f"{choice}")
# radio = gr.Radio(choices=choice_list, label=question,
# visible=True, interactive=True)
# question_radio_list.append(radio)
# if len(question_radio_list)==10:
# break
# else:
# print('10 questions not generated . So trying again!')
# count+=1
# continue
# except Exception as e:
# count+=1
# print(f"Exception occurred: {e}")
# if count==3:
# print('Retry exhausted')
# gr.Warning('Sorry. Pls try with another topic !')
# else:
# print(f"Trying again..{count} time...please wait")
# continue
# print('Question radio list ' , question_radio_list)
# return ['Quiz Generated!']+ question_radio_list
# check_button = gr.Button("Check Score")
# score_textbox = gr.Markdown()
# @check_button.click(inputs=question_radios, outputs=score_textbox)
# def compare_answers(*user_answers):
# user_anwser_list = []
# user_anwser_list = user_answers
# answers_list = []
# for question_num in range(1, 20):
# answer_key = f"A{question_num}"
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not answer:
# break
# answers_list.append(answer)
# score = 0
# for item in user_anwser_list:
# if item in answers_list:
# score += 1
# if score>5:
# message = f"### Good ! You got {score} over 10!"
# elif score>7:
# message = f"### Excellent ! You got {score} over 10!"
# else:
# message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !"
# return message
# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)
# ################################################
# from ragatouille import RAGPretrainedModel
# import subprocess
# import json
# import spaces
# import firebase_admin
# from firebase_admin import credentials, firestore
# import logging
# from pathlib import Path
# from time import perf_counter
# from datetime import datetime
# import gradio as gr
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from sentence_transformers import CrossEncoder
# from os import getenv
# from backend.query_llm import generate_hf, generate_openai
# from backend.semantic_search import table, retriever
# from gradio_client import Client # Modified here
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# proj_dir = Path(__file__).parent
# # Setting up the logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Replace Mixtral client with Qwen Client
# client = Client("Qwen/Qwen1.5-110B-Chat-demo") # Modified here
# # Set up the template environment with the templates directory
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# # Load the templates directly from the environment
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')
# def system_instructions(question_difficulty, topic, documents_str):
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]"""
# # RA
# RAG_db = gr.State()
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
# def load_model():
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# return 'Ready to Go!!'
# with gr.Column(scale=4):
# gr.HTML("""
# <center>
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
# <h2>Generative AI-powered Capacity building for Training Officers</h2>
# <i>โ ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โ ๏ธ</i>
# </center>
# """)
# with gr.Column(scale=2):
# load_btn = gr.Button("Click to Load!๐")
# load_text = gr.Textbox()
# load_btn.click(load_model, [], load_text)
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
# with gr.Row():
# radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
# generate_quiz_btn = gr.Button("Generate Quiz!๐")
# quiz_msg = gr.Textbox()
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
# @spaces.GPU
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios, api_name="generate_quiz")
# def generate_quiz(question_difficulty, topic):
# top_k_rank = 10
# RAG_db_ = RAG_db.value
# documents_full = RAG_db_.search(topic, k=top_k_rank)
# gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.')
# question_radio_list = []
# count = 0
# while count <= 3:
# try:
# documents = [item['content'] for item in documents_full]
# document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)]
# documents_str = '\n'.join(document_summaries)
# formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
# print(formatted_prompt)
# # Use Qwen Client for quiz generation
# response = client.predict(
# query=formatted_prompt,
# history=[],
# system="You are a helpful assistant.", # Modified to match Qwen's API
# api_name="/model_chat"
# )
# print(response)
# response1=response[1][0][1]
# # Find the first and last curly braces
# start_index = response1.find('{')
# end_index = response1.rfind('}')
# # Extract only the JSON part
# if start_index != -1 and end_index != -1:
# cleaned_response = response1[start_index:end_index + 1] # Include the last closing brace
# # Try parsing the cleaned JSON
# try:
# output_json = json.loads(cleaned_response)
# print('Parsed JSON:', output_json) # Successfully print the dictionary
# except json.JSONDecodeError as e:
# print(f"Failed to decode JSON: {e}")
# else:
# print("No valid JSON found in the response.")
# # output_json = json.loads(f"{response}")
# # print('output json', output_json)
# global quiz_data
# quiz_data = output_json
# for question_num in range(1, 11):
# question_key = f"Q{question_num}"
# answer_key = f"A{question_num}"
# question = quiz_data.get(question_key)
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not question or not answer:
# continue
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
# question_radio_list.append(radio)
# print('question_radio_list',question_radio_list)
# if len(question_radio_list) == 10:
# break
# else:
# print('10 questions not generated. Trying again!')
# count += 1
# continue
# except Exception as e:
# count += 1
# print(f"Exception occurred: {e}")
# if count == 3:
# print('Retry exhausted')
# gr.Warning('Sorry. Please try with another topic!')
# else:
# print(f"Trying again.. {count} time... please wait")
# continue
# return ['Quiz Generated!'] + question_radio_list
# check_button = gr.Button("Check Score")
# score_textbox = gr.Markdown()
# @check_button.click(inputs=question_radios, outputs=score_textbox)
# def compare_answers(*user_answers):
# user_anwser_list = list(user_answers)
# answers_list = []
# for question_num in range(1, 20):
# answer_key = f"A{question_num}"
# answer = quiz_data.get(quiz_data.get(answer_key))
# if not answer:
# break
# answers_list.append(answer)
# score = sum(1 for item in user_anwser_list if item in answers_list)
# if score > 5:
# message = f"### Good! You got {score} out of 10!"
# elif score > 7:
# message = f"### Excellent! You got {score} out of 10!"
# else:
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
# return message
# QUIZBOT.queue()
# QUIZBOT.launch(debug=True)
##############??????????????????????????????
import pandas as pd
import json
import gradio as gr
from pathlib import Path
from ragatouille import RAGPretrainedModel
from gradio_client import Client
from jinja2 import Environment, FileSystemLoader
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path(__file__).parent
# Setting up the logging
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Replace Mixtral client with Qwen Client
client = Client("Qwen/Qwen1.5-110B-Chat-demo")
# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
def system_instructions(question_difficulty, topic, documents_str):
return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]"""
# RA
RAG_db = gr.State()
def json_to_excel(output_json):
# Initialize list for DataFrame
data = []
for i in range(1, 11): # Assuming there are 10 questions
question_key = f"Q{i}"
answer_key = f"A{i}"
question = output_json.get(question_key, '')
correct_answer_key = output_json.get(answer_key, '')
correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
# Extract options
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
options = [output_json.get(key, '') for key in option_keys]
# Add data row
data.append([
question, # Question Text
"Multiple Choice", # Question Type
options[0], # Option 1
options[1], # Option 2
options[2] if len(options) > 2 else '', # Option 3
options[3] if len(options) > 3 else '', # Option 4
options[4] if len(options) > 4 else '', # Option 5
correct_answer, # Correct Answer
30, # Time in seconds
'' # Image Link
])
# Create DataFrame
df = pd.DataFrame(data, columns=[
"Question Text",
"Question Type",
"Option 1",
"Option 2",
"Option 3",
"Option 4",
"Option 5",
"Correct Answer",
"Time in seconds",
"Image Link"
])
# Save to Excel file
excel_path = proj_dir / "quiz_questions.xlsx"
df.to_excel(excel_path, index=False)
return excel_path
with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
def load_model():
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
return 'Ready to Go!!'
with gr.Column(scale=4):
gr.HTML("""
<center>
<h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
<h2>Generative AI-powered Capacity building for Training Officers</h2>
<i>โ ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โ ๏ธ</i>
</center>
""")
with gr.Column(scale=2):
load_btn = gr.Button("Click to Load!๐")
load_text = gr.Textbox()
load_btn.click(load_model, [], load_text)
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
with gr.Row():
radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
generate_quiz_btn = gr.Button("Generate Quiz!๐")
quiz_msg = gr.Textbox()
question_radios = [gr.Radio(visible=False) for _ in range(10)]
@gr.dependencies.GPU
@generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")], api_name="generate_quiz")
def generate_quiz(question_difficulty, topic):
top_k_rank = 10
RAG_db_ = RAG_db.value
documents_full = RAG_db_.search(topic, k=top_k_rank)
gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.')
question_radio_list = []
excel_file = None
count = 0
while count <= 3:
try:
documents = [item['content'] for item in documents_full]
document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)]
documents_str = '\n'.join(document_summaries)
formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
print(formatted_prompt)
# Use Qwen Client for quiz generation
response = client.predict(
query=formatted_prompt,
history=[],
system="You are a helpful assistant.",
api_name="/model_chat"
)
print(response)
response1 = response[1][0][1]
# Find the first and last curly braces
start_index = response1.find('{')
end_index = response1.rfind('}')
# Extract only the JSON part
if start_index != -1 and end_index != -1:
cleaned_response = response1[start_index:end_index + 1]
# Try parsing the cleaned JSON
try:
output_json = json.loads(cleaned_response)
print('Parsed JSON:', output_json)
global quiz_data
quiz_data = output_json
# Generate the Excel file
excel_file = json_to_excel(output_json)
for question_num in range(1, 11):
question_key = f"Q{question_num}"
answer_key = f"A{question_num}"
question = quiz_data.get(question_key)
answer = quiz_data.get(quiz_data.get(answer_key))
if not question or not answer:
continue
choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
question_radio_list.append(radio)
print('question_radio_list', question_radio_list)
if len(question_radio_list) == 10:
break
else:
print('10 questions not generated. Trying again!')
count += 1
continue
except json.JSONDecodeError as e:
print(f"Failed to decode JSON: {e}")
else:
print("No valid JSON found in the response.")
except Exception as e:
count += 1
print(f"Exception occurred: {e}")
if count == 3:
print('Retry exhausted')
gr.Warning('Sorry. Please try with another topic!')
else:
print(f"Trying again.. {count} time... please wait")
continue
return ['Quiz Generated!'] + question_radio_list + [excel_file]
check_button = gr.Button("Check Score")
score_textbox = gr.Markdown()
@check_button.click(inputs=question_radios, outputs=score_textbox)
def compare_answers(*user_answers):
user_answer_list = list(user_answers)
answers_list = []
for question_num in range(1, 20):
answer_key = f"A{question_num}"
answer = quiz_data.get(quiz_data.get(answer_key))
if not answer:
break
answers_list.append(answer)
score = sum(1 for item in user_answer_list if item in answers_list)
if score > 7:
message = f"### Excellent! You got {score} out of 10!"
elif score > 5:
message = f"### Good! You got {score} out of 10!"
else:
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
return message
QUIZBOT.queue()
QUIZBOT.launch(debug=True)
|