Spaces:
Sleeping
Sleeping
NCTCMumbai
commited on
Commit
•
24d1627
1
Parent(s):
9700457
Update app.py
Browse files
app.py
CHANGED
@@ -1,394 +1,4 @@
|
|
1 |
|
2 |
-
# from ragatouille import RAGPretrainedModel
|
3 |
-
# import subprocess
|
4 |
-
# import json
|
5 |
-
# import spaces
|
6 |
-
# import firebase_admin
|
7 |
-
# from firebase_admin import credentials, firestore
|
8 |
-
# import logging
|
9 |
-
# from pathlib import Path
|
10 |
-
# from time import perf_counter
|
11 |
-
# from datetime import datetime
|
12 |
-
# import gradio as gr
|
13 |
-
# from jinja2 import Environment, FileSystemLoader
|
14 |
-
# import numpy as np
|
15 |
-
|
16 |
-
# from huggingface_hub import InferenceClient
|
17 |
-
# from os import getenv
|
18 |
-
|
19 |
-
# from backend.query_llm import generate_hf, generate_openai
|
20 |
-
|
21 |
-
# from huggingface_hub import InferenceClient
|
22 |
-
|
23 |
-
|
24 |
-
# VECTOR_COLUMN_NAME = "vector"
|
25 |
-
# TEXT_COLUMN_NAME = "text"
|
26 |
-
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
|
27 |
-
# proj_dir = Path(__file__).parent
|
28 |
-
# # Setting up the logging
|
29 |
-
# logging.basicConfig(level=logging.INFO)
|
30 |
-
# logger = logging.getLogger(__name__)
|
31 |
-
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
|
32 |
-
# # Set up the template environment with the templates directory
|
33 |
-
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
34 |
-
|
35 |
-
# # Load the templates directly from the environment
|
36 |
-
# template = env.get_template('template.j2')
|
37 |
-
# template_html = env.get_template('template_html.j2')
|
38 |
-
|
39 |
-
# def system_instructions(question_difficulty, topic,documents_str):
|
40 |
-
# return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""
|
41 |
-
|
42 |
-
|
43 |
-
# RAG_db=gr.State()
|
44 |
-
|
45 |
-
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
|
46 |
-
# def load_model():
|
47 |
-
# RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
48 |
-
# RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
49 |
-
# return 'Ready to Go!!'
|
50 |
-
# with gr.Column(scale=4):
|
51 |
-
# gr.HTML("""
|
52 |
-
# <center>
|
53 |
-
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
|
54 |
-
# <h2>Generative AI-powered Capacity building for Training Officers</h2>
|
55 |
-
# <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️</i>
|
56 |
-
# </center>
|
57 |
-
# """)
|
58 |
-
# #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
|
59 |
-
# with gr.Column(scale=2):
|
60 |
-
# load_btn = gr.Button("Click to Load!🚀")
|
61 |
-
# load_text=gr.Textbox()
|
62 |
-
# load_btn.click(load_model,[],load_text)
|
63 |
-
|
64 |
-
|
65 |
-
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
|
66 |
-
|
67 |
-
# with gr.Row():
|
68 |
-
# radio = gr.Radio(
|
69 |
-
# ["easy", "average", "hard"], label="How difficult should the quiz be?"
|
70 |
-
# )
|
71 |
-
|
72 |
-
|
73 |
-
# generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
74 |
-
# quiz_msg=gr.Textbox()
|
75 |
-
|
76 |
-
# question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
|
77 |
-
# visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
|
78 |
-
# visible=False), gr.Radio(visible=False), gr.Radio(visible=False)]
|
79 |
-
|
80 |
-
# print(question_radios)
|
81 |
-
|
82 |
-
# @spaces.GPU
|
83 |
-
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz")
|
84 |
-
# def generate_quiz(question_difficulty, topic):
|
85 |
-
# top_k_rank=10
|
86 |
-
# RAG_db_=RAG_db.value
|
87 |
-
# documents_full=RAG_db_.search(topic,k=top_k_rank)
|
88 |
-
# gr.Warning('Generation of Quiz may take 1 to 2 minute. Pls wait')
|
89 |
-
|
90 |
-
|
91 |
-
# generate_kwargs = dict(
|
92 |
-
# temperature=0.2,
|
93 |
-
# max_new_tokens=4000,
|
94 |
-
# top_p=0.95,
|
95 |
-
# repetition_penalty=1.0,
|
96 |
-
# do_sample=True,
|
97 |
-
# seed=42,
|
98 |
-
# )
|
99 |
-
# question_radio_list = []
|
100 |
-
# count=0
|
101 |
-
# while count<=3:
|
102 |
-
# try:
|
103 |
-
# documents=[item['content'] for item in documents_full]
|
104 |
-
# document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
|
105 |
-
# documents_str='\n'.join(document_summaries)
|
106 |
-
# formatted_prompt = system_instructions(
|
107 |
-
# question_difficulty, topic,documents_str)
|
108 |
-
# print(formatted_prompt)
|
109 |
-
# pre_prompt = [
|
110 |
-
# {"role": "system", "content": formatted_prompt}
|
111 |
-
# ]
|
112 |
-
# response = client.text_generation(
|
113 |
-
# formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
|
114 |
-
# )
|
115 |
-
# output_json = json.loads(f"{response}")
|
116 |
-
|
117 |
-
|
118 |
-
# print(response)
|
119 |
-
# print('output json', output_json)
|
120 |
-
|
121 |
-
# global quiz_data
|
122 |
-
|
123 |
-
# quiz_data = output_json
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# for question_num in range(1, 11):
|
128 |
-
# question_key = f"Q{question_num}"
|
129 |
-
# answer_key = f"A{question_num}"
|
130 |
-
|
131 |
-
# question = quiz_data.get(question_key)
|
132 |
-
# answer = quiz_data.get(quiz_data.get(answer_key))
|
133 |
-
|
134 |
-
# if not question or not answer:
|
135 |
-
# continue
|
136 |
-
|
137 |
-
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
138 |
-
# choice_list = []
|
139 |
-
# for choice_key in choice_keys:
|
140 |
-
# choice = quiz_data.get(choice_key, "Choice not found")
|
141 |
-
# choice_list.append(f"{choice}")
|
142 |
-
|
143 |
-
# radio = gr.Radio(choices=choice_list, label=question,
|
144 |
-
# visible=True, interactive=True)
|
145 |
-
|
146 |
-
# question_radio_list.append(radio)
|
147 |
-
# if len(question_radio_list)==10:
|
148 |
-
# break
|
149 |
-
# else:
|
150 |
-
# print('10 questions not generated . So trying again!')
|
151 |
-
# count+=1
|
152 |
-
# continue
|
153 |
-
# except Exception as e:
|
154 |
-
# count+=1
|
155 |
-
# print(f"Exception occurred: {e}")
|
156 |
-
# if count==3:
|
157 |
-
# print('Retry exhausted')
|
158 |
-
# gr.Warning('Sorry. Pls try with another topic !')
|
159 |
-
# else:
|
160 |
-
# print(f"Trying again..{count} time...please wait")
|
161 |
-
# continue
|
162 |
-
|
163 |
-
# print('Question radio list ' , question_radio_list)
|
164 |
-
|
165 |
-
# return ['Quiz Generated!']+ question_radio_list
|
166 |
-
|
167 |
-
# check_button = gr.Button("Check Score")
|
168 |
-
|
169 |
-
# score_textbox = gr.Markdown()
|
170 |
-
|
171 |
-
# @check_button.click(inputs=question_radios, outputs=score_textbox)
|
172 |
-
# def compare_answers(*user_answers):
|
173 |
-
# user_anwser_list = []
|
174 |
-
# user_anwser_list = user_answers
|
175 |
-
|
176 |
-
# answers_list = []
|
177 |
-
|
178 |
-
# for question_num in range(1, 20):
|
179 |
-
# answer_key = f"A{question_num}"
|
180 |
-
# answer = quiz_data.get(quiz_data.get(answer_key))
|
181 |
-
# if not answer:
|
182 |
-
# break
|
183 |
-
# answers_list.append(answer)
|
184 |
-
|
185 |
-
# score = 0
|
186 |
-
|
187 |
-
# for item in user_anwser_list:
|
188 |
-
# if item in answers_list:
|
189 |
-
# score += 1
|
190 |
-
# if score>5:
|
191 |
-
# message = f"### Good ! You got {score} over 10!"
|
192 |
-
# elif score>7:
|
193 |
-
# message = f"### Excellent ! You got {score} over 10!"
|
194 |
-
# else:
|
195 |
-
# message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !"
|
196 |
-
|
197 |
-
# return message
|
198 |
-
|
199 |
-
|
200 |
-
# QUIZBOT.queue()
|
201 |
-
# QUIZBOT.launch(debug=True)
|
202 |
-
|
203 |
-
|
204 |
-
# ################################################
|
205 |
-
# from ragatouille import RAGPretrainedModel
|
206 |
-
# import subprocess
|
207 |
-
# import json
|
208 |
-
# import spaces
|
209 |
-
# import firebase_admin
|
210 |
-
# from firebase_admin import credentials, firestore
|
211 |
-
# import logging
|
212 |
-
# from pathlib import Path
|
213 |
-
# from time import perf_counter
|
214 |
-
# from datetime import datetime
|
215 |
-
# import gradio as gr
|
216 |
-
# from jinja2 import Environment, FileSystemLoader
|
217 |
-
# import numpy as np
|
218 |
-
# from sentence_transformers import CrossEncoder
|
219 |
-
# from os import getenv
|
220 |
-
# from backend.query_llm import generate_hf, generate_openai
|
221 |
-
# from backend.semantic_search import table, retriever
|
222 |
-
# from gradio_client import Client # Modified here
|
223 |
-
|
224 |
-
# VECTOR_COLUMN_NAME = "vector"
|
225 |
-
# TEXT_COLUMN_NAME = "text"
|
226 |
-
# proj_dir = Path(__file__).parent
|
227 |
-
|
228 |
-
# # Setting up the logging
|
229 |
-
# logging.basicConfig(level=logging.INFO)
|
230 |
-
# logger = logging.getLogger(__name__)
|
231 |
-
|
232 |
-
# # Replace Mixtral client with Qwen Client
|
233 |
-
# client = Client("Qwen/Qwen1.5-110B-Chat-demo") # Modified here
|
234 |
-
|
235 |
-
# # Set up the template environment with the templates directory
|
236 |
-
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
237 |
-
|
238 |
-
# # Load the templates directly from the environment
|
239 |
-
# template = env.get_template('template.j2')
|
240 |
-
# template_html = env.get_template('template_html.j2')
|
241 |
-
|
242 |
-
# def system_instructions(question_difficulty, topic, documents_str):
|
243 |
-
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]"""
|
244 |
-
|
245 |
-
# # RA
|
246 |
-
# RAG_db = gr.State()
|
247 |
-
|
248 |
-
# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
|
249 |
-
# def load_model():
|
250 |
-
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
251 |
-
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
252 |
-
# return 'Ready to Go!!'
|
253 |
-
|
254 |
-
# with gr.Column(scale=4):
|
255 |
-
# gr.HTML("""
|
256 |
-
# <center>
|
257 |
-
# <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
|
258 |
-
# <h2>Generative AI-powered Capacity building for Training Officers</h2>
|
259 |
-
# <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️</i>
|
260 |
-
# </center>
|
261 |
-
# """)
|
262 |
-
|
263 |
-
# with gr.Column(scale=2):
|
264 |
-
# load_btn = gr.Button("Click to Load!🚀")
|
265 |
-
# load_text = gr.Textbox()
|
266 |
-
# load_btn.click(load_model, [], load_text)
|
267 |
-
|
268 |
-
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
|
269 |
-
|
270 |
-
# with gr.Row():
|
271 |
-
# radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
272 |
-
|
273 |
-
# generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
274 |
-
# quiz_msg = gr.Textbox()
|
275 |
-
|
276 |
-
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
277 |
-
|
278 |
-
# @spaces.GPU
|
279 |
-
# @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios, api_name="generate_quiz")
|
280 |
-
# def generate_quiz(question_difficulty, topic):
|
281 |
-
# top_k_rank = 10
|
282 |
-
# RAG_db_ = RAG_db.value
|
283 |
-
# documents_full = RAG_db_.search(topic, k=top_k_rank)
|
284 |
-
|
285 |
-
# gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.')
|
286 |
-
|
287 |
-
# question_radio_list = []
|
288 |
-
# count = 0
|
289 |
-
# while count <= 3:
|
290 |
-
# try:
|
291 |
-
# documents = [item['content'] for item in documents_full]
|
292 |
-
# document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)]
|
293 |
-
# documents_str = '\n'.join(document_summaries)
|
294 |
-
# formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
|
295 |
-
|
296 |
-
# print(formatted_prompt)
|
297 |
-
|
298 |
-
# # Use Qwen Client for quiz generation
|
299 |
-
# response = client.predict(
|
300 |
-
# query=formatted_prompt,
|
301 |
-
# history=[],
|
302 |
-
# system="You are a helpful assistant.", # Modified to match Qwen's API
|
303 |
-
# api_name="/model_chat"
|
304 |
-
# )
|
305 |
-
# print(response)
|
306 |
-
# response1=response[1][0][1]
|
307 |
-
# # Find the first and last curly braces
|
308 |
-
# start_index = response1.find('{')
|
309 |
-
# end_index = response1.rfind('}')
|
310 |
-
|
311 |
-
# # Extract only the JSON part
|
312 |
-
# if start_index != -1 and end_index != -1:
|
313 |
-
# cleaned_response = response1[start_index:end_index + 1] # Include the last closing brace
|
314 |
-
|
315 |
-
# # Try parsing the cleaned JSON
|
316 |
-
# try:
|
317 |
-
# output_json = json.loads(cleaned_response)
|
318 |
-
# print('Parsed JSON:', output_json) # Successfully print the dictionary
|
319 |
-
# except json.JSONDecodeError as e:
|
320 |
-
# print(f"Failed to decode JSON: {e}")
|
321 |
-
# else:
|
322 |
-
# print("No valid JSON found in the response.")
|
323 |
-
# # output_json = json.loads(f"{response}")
|
324 |
-
# # print('output json', output_json)
|
325 |
-
|
326 |
-
# global quiz_data
|
327 |
-
# quiz_data = output_json
|
328 |
-
|
329 |
-
# for question_num in range(1, 11):
|
330 |
-
# question_key = f"Q{question_num}"
|
331 |
-
# answer_key = f"A{question_num}"
|
332 |
-
|
333 |
-
# question = quiz_data.get(question_key)
|
334 |
-
# answer = quiz_data.get(quiz_data.get(answer_key))
|
335 |
-
|
336 |
-
# if not question or not answer:
|
337 |
-
# continue
|
338 |
-
|
339 |
-
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
340 |
-
# choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
341 |
-
|
342 |
-
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
343 |
-
# question_radio_list.append(radio)
|
344 |
-
# print('question_radio_list',question_radio_list)
|
345 |
-
|
346 |
-
# if len(question_radio_list) == 10:
|
347 |
-
# break
|
348 |
-
# else:
|
349 |
-
# print('10 questions not generated. Trying again!')
|
350 |
-
# count += 1
|
351 |
-
# continue
|
352 |
-
# except Exception as e:
|
353 |
-
# count += 1
|
354 |
-
# print(f"Exception occurred: {e}")
|
355 |
-
# if count == 3:
|
356 |
-
# print('Retry exhausted')
|
357 |
-
# gr.Warning('Sorry. Please try with another topic!')
|
358 |
-
# else:
|
359 |
-
# print(f"Trying again.. {count} time... please wait")
|
360 |
-
# continue
|
361 |
-
|
362 |
-
# return ['Quiz Generated!'] + question_radio_list
|
363 |
-
|
364 |
-
# check_button = gr.Button("Check Score")
|
365 |
-
# score_textbox = gr.Markdown()
|
366 |
-
|
367 |
-
# @check_button.click(inputs=question_radios, outputs=score_textbox)
|
368 |
-
# def compare_answers(*user_answers):
|
369 |
-
# user_anwser_list = list(user_answers)
|
370 |
-
# answers_list = []
|
371 |
-
|
372 |
-
# for question_num in range(1, 20):
|
373 |
-
# answer_key = f"A{question_num}"
|
374 |
-
# answer = quiz_data.get(quiz_data.get(answer_key))
|
375 |
-
# if not answer:
|
376 |
-
# break
|
377 |
-
# answers_list.append(answer)
|
378 |
-
|
379 |
-
# score = sum(1 for item in user_anwser_list if item in answers_list)
|
380 |
-
|
381 |
-
# if score > 5:
|
382 |
-
# message = f"### Good! You got {score} out of 10!"
|
383 |
-
# elif score > 7:
|
384 |
-
# message = f"### Excellent! You got {score} out of 10!"
|
385 |
-
# else:
|
386 |
-
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
|
387 |
-
|
388 |
-
# return message
|
389 |
-
|
390 |
-
# QUIZBOT.queue()
|
391 |
-
# QUIZBOT.launch(debug=True)
|
392 |
# ##############??????????????????????????????
|
393 |
# import pandas as pd
|
394 |
# import json
|
@@ -667,8 +277,9 @@ def json_to_excel(output_json):
|
|
667 |
|
668 |
question = output_json.get(question_key, '')
|
669 |
correct_answer_key = output_json.get(answer_key, '')
|
670 |
-
correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
671 |
-
|
|
|
672 |
# Extract options
|
673 |
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
674 |
options = [output_json.get(key, '') for key in option_keys]
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
# ##############??????????????????????????????
|
3 |
# import pandas as pd
|
4 |
# import json
|
|
|
277 |
|
278 |
question = output_json.get(question_key, '')
|
279 |
correct_answer_key = output_json.get(answer_key, '')
|
280 |
+
#correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
281 |
+
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
|
282 |
+
|
283 |
# Extract options
|
284 |
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
285 |
options = [output_json.get(key, '') for key in option_keys]
|