# ##############?????????????????????????????? # import pandas as pd # import json # import gradio as gr # from pathlib import Path # from ragatouille import RAGPretrainedModel # from gradio_client import Client # from jinja2 import Environment, FileSystemLoader # from tempfile import NamedTemporaryFile # VECTOR_COLUMN_NAME = "vector" # TEXT_COLUMN_NAME = "text" # #proj_dir = Path(__file__).parent # proj_dir = Path.cwd() # # Setting up the logging # import logging # logging.basicConfig(level=logging.INFO) # logger = logging.getLogger(__name__) # # Replace Mixtral client with Qwen Client # client = Client("Qwen/Qwen1.5-110B-Chat-demo") # # Set up the template environment with the templates directory # env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) # # Load the templates directly from the environment # template = env.get_template('template.j2') # template_html = env.get_template('template_html.j2') # def system_instructions(question_difficulty, topic, documents_str): # return f""" [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]""" # # RA # RAG_db = gr.State() # def json_to_excel(output_json): # # Initialize list for DataFrame # data = [] # gr.Warning('Generating Shareable file link..',duration=30) # for i in range(1, 11): # Assuming there are 10 questions # question_key = f"Q{i}" # answer_key = f"A{i}" # question = output_json.get(question_key, '') # correct_answer_key = output_json.get(answer_key, '') # correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else '' # # Extract options # option_keys = [f"{question_key}:C{i}" for i in range(1, 6)] # options = [output_json.get(key, '') for key in option_keys] # # Add data row # data.append([ # question, # Question Text # "Multiple Choice", # Question Type # options[0], # Option 1 # options[1], # Option 2 # options[2] if len(options) > 2 else '', # Option 3 # options[3] if len(options) > 3 else '', # Option 4 # options[4] if len(options) > 4 else '', # Option 5 # correct_answer, # Correct Answer # 30, # Time in seconds # '' # Image Link # ]) # # Create DataFrame # df = pd.DataFrame(data, columns=[ # "Question Text", # "Question Type", # "Option 1", # "Option 2", # "Option 3", # "Option 4", # "Option 5", # "Correct Answer", # "Time in seconds", # "Image Link" # ]) # # Create a temporary file and save the DataFrame to it # temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx") # df.to_excel(temp_file.name, index=False) # # # Save to Excel file # # excel_path = proj_dir / "quiz_questions.xlsx" # # df.to_excel(str(excel_path), index=False) # return temp_file.name # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: # def load_model(): # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") # RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') # return 'Ready to Go!!' # with gr.Column(scale=4): # gr.HTML(""" #
#

ADWITIYA Customs Manual Quizbot

#

Generative AI-powered Capacity building for Training Officers

# ⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️ #
# """) # with gr.Column(scale=2): # load_btn = gr.Button("Click to Load!🚀") # load_text = gr.Textbox() # load_btn.click(load_model, [], load_text) # topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") # with gr.Row(): # radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") # generate_quiz_btn = gr.Button("Generate Quiz!🚀") # quiz_msg = gr.Textbox() # question_radios = [gr.Radio(visible=False) for _ in range(10)] # #@gr.dependencies.GPU # @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")], api_name="generate_quiz") # def generate_quiz(question_difficulty, topic): # top_k_rank = 10 # RAG_db_ = RAG_db.value # documents_full = RAG_db_.search(topic, k=top_k_rank) # gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.',duration=60) # question_radio_list = [] # excel_file = None # count = 0 # while count <= 3: # try: # documents = [item['content'] for item in documents_full] # document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)] # documents_str = '\n'.join(document_summaries) # formatted_prompt = system_instructions(question_difficulty, topic, documents_str) # print(formatted_prompt) # # Use Qwen Client for quiz generation # response = client.predict( # query=formatted_prompt, # history=[], # system="You are a helpful assistant.", # api_name="/model_chat" # ) # print(response) # response1 = response[1][0][1] # # Find the first and last curly braces # start_index = response1.find('{') # end_index = response1.rfind('}') # # Extract only the JSON part # if start_index != -1 and end_index != -1: # cleaned_response = response1[start_index:end_index + 1] # # Try parsing the cleaned JSON # try: # output_json = json.loads(cleaned_response) # print('Parsed JSON:', output_json) # global quiz_data # quiz_data = output_json # # Generate the Excel file # excel_file = json_to_excel(output_json) # for question_num in range(1, 11): # question_key = f"Q{question_num}" # answer_key = f"A{question_num}" # question = quiz_data.get(question_key) # answer = quiz_data.get(quiz_data.get(answer_key)) # if not question or not answer: # continue # choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] # choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys] # radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) # question_radio_list.append(radio) # print('question_radio_list', question_radio_list) # if len(question_radio_list) == 10: # break # else: # print('10 questions not generated. Trying again!') # count += 1 # continue # except json.JSONDecodeError as e: # print(f"Failed to decode JSON: {e}") # else: # print("No valid JSON found in the response.") # except Exception as e: # count += 1 # print(f"Exception occurred: {e}") # if count == 3: # print('Retry exhausted') # gr.Warning('Sorry. Please try with another topic!') # else: # print(f"Trying again.. {count} time... please wait") # continue # return ['Quiz Generated!'] + question_radio_list + [excel_file] # check_button = gr.Button("Check Score") # score_textbox = gr.Markdown() # @check_button.click(inputs=question_radios, outputs=score_textbox) # def compare_answers(*user_answers): # user_answer_list = list(user_answers) # answers_list = [] # for question_num in range(1, 20): # answer_key = f"A{question_num}" # answer = quiz_data.get(quiz_data.get(answer_key)) # if not answer: # break # answers_list.append(answer) # score = sum(1 for item in user_answer_list if item in answers_list) # if score > 7: # message = f"### Excellent! You got {score} out of 10!" # elif score > 5: # message = f"### Good! You got {score} out of 10!" # else: # message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!" # return message # QUIZBOT.queue() # QUIZBOT.launch(debug=True) #????????????????????????????????? import pandas as pd import json import gradio as gr from pathlib import Path from ragatouille import RAGPretrainedModel from gradio_client import Client from tempfile import NamedTemporaryFile from sentence_transformers import CrossEncoder import numpy as np from time import perf_counter from sentence_transformers import CrossEncoder from backend.semantic_search import table, retriever VECTOR_COLUMN_NAME = "vector" TEXT_COLUMN_NAME = "text" proj_dir = Path.cwd() # Set up logging import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Replace Mixtral client with Qwen Client client = Client("Qwen/Qwen1.5-110B-Chat-demo") def system_instructions(question_difficulty, topic, documents_str): return f""" [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]""" # RA RAG_db = gr.State() def json_to_excel(output_json): # Initialize list for DataFrame data = [] gr.Warning('Generating Shareable file link..', duration=30) for i in range(1, 11): # Assuming there are 10 questions question_key = f"Q{i}" answer_key = f"A{i}" question = output_json.get(question_key, '') correct_answer_key = output_json.get(answer_key, '') #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else '' correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else '' # Extract options option_keys = [f"{question_key}:C{i}" for i in range(1, 6)] options = [output_json.get(key, '') for key in option_keys] # Add data row data.append([ question, # Question Text "Multiple Choice", # Question Type options[0], # Option 1 options[1], # Option 2 options[2] if len(options) > 2 else '', # Option 3 options[3] if len(options) > 3 else '', # Option 4 options[4] if len(options) > 4 else '', # Option 5 correct_answer, # Correct Answer 30, # Time in seconds '' # Image Link ]) # Create DataFrame df = pd.DataFrame(data, columns=[ "Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link" ]) temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx") df.to_excel(temp_file.name, index=False) return temp_file.name with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green")) as QUIZBOT: with gr.Column(scale=4): gr.HTML("""

ADWITIYA Customs Manual Quizbot

Generative AI-powered Capacity building for Training Officers

⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️
""") topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") with gr.Row(): difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") model_radio = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="First query to ColBERT may take a little time") generate_quiz_btn = gr.Button("Generate Quiz!🚀") quiz_msg = gr.Textbox() question_radios = [gr.Radio(visible=False) for _ in range(10)] @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")]) def generate_quiz(question_difficulty, topic, cross_encoder): top_k_rank = 10 documents = [] gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60) if cross_encoder == '(HIGH ACCURATE) ColBERT': gr.Warning('Retrieving using ColBERT.. First-time query will take a minute for model to load.. please wait') RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') documents_full = RAG_db.value.search(topic, k=top_k_rank) documents = [item['content'] for item in documents_full] else: document_start = perf_counter() query_vec = retriever.encode(topic) doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list() documents = [doc[TEXT_COLUMN_NAME] for doc in documents] query_doc_pair = [[topic, doc] for doc in documents] if cross_encoder == '(FAST) MiniLM-L6v2': cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') elif cross_encoder == '(ACCURATE) BGE reranker': cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') cross_scores = cross_encoder1.predict(query_doc_pair) sim_scores_argsort = list(reversed(np.argsort(cross_scores))) documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents)) try: response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat") response1 = response[1][0][1] # Extract JSON start_index = response1.find('{') end_index = response1.rfind('}') cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else '' output_json = json.loads(cleaned_response) # Generate the Excel file excel_file = json_to_excel(output_json) question_radio_list = [] for question_num in range(1, 11): question_key = f"Q{question_num}" answer_key = f"A{question_num}" question = output_json.get(question_key) answer = output_json.get(output_json.get(answer_key)) if not question or not answer: continue choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys] radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) question_radio_list.append(radio) return ['Quiz Generated!'] + question_radio_list + [excel_file] except json.JSONDecodeError as e: print(f"Failed to decode JSON: {e}") check_button = gr.Button("Check Score") score_textbox = gr.Markdown() @check_button.click(inputs=question_radios, outputs=score_textbox) def compare_answers(*user_answers): user_answer_list = list(user_answers) answers_list = [] for question_num in range(1, 20): answer_key = f"A{question_num}" answer = quiz_data.get(quiz_data.get(answer_key)) if not answer: break answers_list.append(answer) score = sum(1 for item in user_answer_list if item in answers_list) if score > 7: message = f"### Excellent! You got {score} out of 10!" elif score > 5: message = f"### Good! You got {score} out of 10!" else: message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!" return message QUIZBOT.queue() QUIZBOT.launch(debug=True)