# from ragatouille import RAGPretrainedModel # import subprocess # import json # import spaces # import firebase_admin # from firebase_admin import credentials, firestore # import logging # from pathlib import Path # from time import perf_counter # from datetime import datetime # import gradio as gr # from jinja2 import Environment, FileSystemLoader # import numpy as np # from sentence_transformers import CrossEncoder # from huggingface_hub import InferenceClient # from os import getenv # from backend.query_llm import generate_hf, generate_openai # from backend.semantic_search import table, retriever # from huggingface_hub import InferenceClient # VECTOR_COLUMN_NAME = "vector" # TEXT_COLUMN_NAME = "text" # HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") # proj_dir = Path(__file__).parent # # Setting up the logging # logging.basicConfig(level=logging.INFO) # logger = logging.getLogger(__name__) # client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN) # # Set up the template environment with the templates directory # env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) # # Load the templates directly from the environment # template = env.get_template('template.j2') # template_html = env.get_template('template_html.j2') # def system_instructions(question_difficulty, topic,documents_str): # return f""" [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]""" # RAG_db=gr.State() # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: # def load_model(): # RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") # RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') # return 'Ready to Go!!' # with gr.Column(scale=4): # gr.HTML(""" #
#

ADWITIYA Customs Manual Quizbot

#

Generative AI-powered Capacity building for Training Officers

# ⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️ #
# """) # #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') # with gr.Column(scale=2): # load_btn = gr.Button("Click to Load!🚀") # load_text=gr.Textbox() # load_btn.click(load_model,[],load_text) # topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") # with gr.Row(): # radio = gr.Radio( # ["easy", "average", "hard"], label="How difficult should the quiz be?" # ) # generate_quiz_btn = gr.Button("Generate Quiz!🚀") # quiz_msg=gr.Textbox() # question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( # visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( # visible=False), gr.Radio(visible=False), gr.Radio(visible=False)] # print(question_radios) # @spaces.GPU # @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz") # def generate_quiz(question_difficulty, topic): # top_k_rank=10 # RAG_db_=RAG_db.value # documents_full=RAG_db_.search(topic,k=top_k_rank) # gr.Warning('Generation of Quiz may take 1 to 2 minute. Pls wait') # generate_kwargs = dict( # temperature=0.2, # max_new_tokens=4000, # top_p=0.95, # repetition_penalty=1.0, # do_sample=True, # seed=42, # ) # question_radio_list = [] # count=0 # while count<=3: # try: # documents=[item['content'] for item in documents_full] # document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)] # documents_str='\n'.join(document_summaries) # formatted_prompt = system_instructions( # question_difficulty, topic,documents_str) # print(formatted_prompt) # pre_prompt = [ # {"role": "system", "content": formatted_prompt} # ] # response = client.text_generation( # formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, # ) # output_json = json.loads(f"{response}") # print(response) # print('output json', output_json) # global quiz_data # quiz_data = output_json # for question_num in range(1, 11): # question_key = f"Q{question_num}" # answer_key = f"A{question_num}" # question = quiz_data.get(question_key) # answer = quiz_data.get(quiz_data.get(answer_key)) # if not question or not answer: # continue # choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] # choice_list = [] # for choice_key in choice_keys: # choice = quiz_data.get(choice_key, "Choice not found") # choice_list.append(f"{choice}") # radio = gr.Radio(choices=choice_list, label=question, # visible=True, interactive=True) # question_radio_list.append(radio) # if len(question_radio_list)==10: # break # else: # print('10 questions not generated . So trying again!') # count+=1 # continue # except Exception as e: # count+=1 # print(f"Exception occurred: {e}") # if count==3: # print('Retry exhausted') # gr.Warning('Sorry. Pls try with another topic !') # else: # print(f"Trying again..{count} time...please wait") # continue # print('Question radio list ' , question_radio_list) # return ['Quiz Generated!']+ question_radio_list # check_button = gr.Button("Check Score") # score_textbox = gr.Markdown() # @check_button.click(inputs=question_radios, outputs=score_textbox) # def compare_answers(*user_answers): # user_anwser_list = [] # user_anwser_list = user_answers # answers_list = [] # for question_num in range(1, 20): # answer_key = f"A{question_num}" # answer = quiz_data.get(quiz_data.get(answer_key)) # if not answer: # break # answers_list.append(answer) # score = 0 # for item in user_anwser_list: # if item in answers_list: # score += 1 # if score>5: # message = f"### Good ! You got {score} over 10!" # elif score>7: # message = f"### Excellent ! You got {score} over 10!" # else: # message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !" # return message # QUIZBOT.queue() # QUIZBOT.launch(debug=True) # ################################################ # from ragatouille import RAGPretrainedModel # import subprocess # import json # import spaces # import firebase_admin # from firebase_admin import credentials, firestore # import logging # from pathlib import Path # from time import perf_counter # from datetime import datetime # import gradio as gr # from jinja2 import Environment, FileSystemLoader # import numpy as np # from sentence_transformers import CrossEncoder # from os import getenv # from backend.query_llm import generate_hf, generate_openai # from backend.semantic_search import table, retriever # from gradio_client import Client # Modified here # VECTOR_COLUMN_NAME = "vector" # TEXT_COLUMN_NAME = "text" # proj_dir = Path(__file__).parent # # Setting up the logging # logging.basicConfig(level=logging.INFO) # logger = logging.getLogger(__name__) # # Replace Mixtral client with Qwen Client # client = Client("Qwen/Qwen1.5-110B-Chat-demo") # Modified here # # Set up the template environment with the templates directory # env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) # # Load the templates directly from the environment # template = env.get_template('template.j2') # template_html = env.get_template('template_html.j2') # def system_instructions(question_difficulty, topic, documents_str): # return f""" [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]""" # # RA # RAG_db = gr.State() # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: # def load_model(): # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") # RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') # return 'Ready to Go!!' # with gr.Column(scale=4): # gr.HTML(""" #
#

ADWITIYA Customs Manual Quizbot

#

Generative AI-powered Capacity building for Training Officers

# ⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️ #
# """) # with gr.Column(scale=2): # load_btn = gr.Button("Click to Load!🚀") # load_text = gr.Textbox() # load_btn.click(load_model, [], load_text) # topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") # with gr.Row(): # radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") # generate_quiz_btn = gr.Button("Generate Quiz!🚀") # quiz_msg = gr.Textbox() # question_radios = [gr.Radio(visible=False) for _ in range(10)] # @spaces.GPU # @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios, api_name="generate_quiz") # def generate_quiz(question_difficulty, topic): # top_k_rank = 10 # RAG_db_ = RAG_db.value # documents_full = RAG_db_.search(topic, k=top_k_rank) # gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.') # question_radio_list = [] # count = 0 # while count <= 3: # try: # documents = [item['content'] for item in documents_full] # document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)] # documents_str = '\n'.join(document_summaries) # formatted_prompt = system_instructions(question_difficulty, topic, documents_str) # print(formatted_prompt) # # Use Qwen Client for quiz generation # response = client.predict( # query=formatted_prompt, # history=[], # system="You are a helpful assistant.", # Modified to match Qwen's API # api_name="/model_chat" # ) # print(response) # response1=response[1][0][1] # # Find the first and last curly braces # start_index = response1.find('{') # end_index = response1.rfind('}') # # Extract only the JSON part # if start_index != -1 and end_index != -1: # cleaned_response = response1[start_index:end_index + 1] # Include the last closing brace # # Try parsing the cleaned JSON # try: # output_json = json.loads(cleaned_response) # print('Parsed JSON:', output_json) # Successfully print the dictionary # except json.JSONDecodeError as e: # print(f"Failed to decode JSON: {e}") # else: # print("No valid JSON found in the response.") # # output_json = json.loads(f"{response}") # # print('output json', output_json) # global quiz_data # quiz_data = output_json # for question_num in range(1, 11): # question_key = f"Q{question_num}" # answer_key = f"A{question_num}" # question = quiz_data.get(question_key) # answer = quiz_data.get(quiz_data.get(answer_key)) # if not question or not answer: # continue # choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] # choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys] # radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) # question_radio_list.append(radio) # print('question_radio_list',question_radio_list) # if len(question_radio_list) == 10: # break # else: # print('10 questions not generated. Trying again!') # count += 1 # continue # except Exception as e: # count += 1 # print(f"Exception occurred: {e}") # if count == 3: # print('Retry exhausted') # gr.Warning('Sorry. Please try with another topic!') # else: # print(f"Trying again.. {count} time... please wait") # continue # return ['Quiz Generated!'] + question_radio_list # check_button = gr.Button("Check Score") # score_textbox = gr.Markdown() # @check_button.click(inputs=question_radios, outputs=score_textbox) # def compare_answers(*user_answers): # user_anwser_list = list(user_answers) # answers_list = [] # for question_num in range(1, 20): # answer_key = f"A{question_num}" # answer = quiz_data.get(quiz_data.get(answer_key)) # if not answer: # break # answers_list.append(answer) # score = sum(1 for item in user_anwser_list if item in answers_list) # if score > 5: # message = f"### Good! You got {score} out of 10!" # elif score > 7: # message = f"### Excellent! You got {score} out of 10!" # else: # message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!" # return message # QUIZBOT.queue() # QUIZBOT.launch(debug=True) ##############?????????????????????????????? import pandas as pd import json import gradio as gr from pathlib import Path from ragatouille import RAGPretrainedModel from gradio_client import Client from jinja2 import Environment, FileSystemLoader VECTOR_COLUMN_NAME = "vector" TEXT_COLUMN_NAME = "text" proj_dir = Path(__file__).parent # Setting up the logging import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Replace Mixtral client with Qwen Client client = Client("Qwen/Qwen1.5-110B-Chat-demo") # Set up the template environment with the templates directory env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) # Load the templates directly from the environment template = env.get_template('template.j2') template_html = env.get_template('template_html.j2') def system_instructions(question_difficulty, topic, documents_str): return f""" [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". example is 'A10':'Q10:C3' [/INST]""" # RA RAG_db = gr.State() def json_to_excel(output_json): # Initialize list for DataFrame data = [] for i in range(1, 11): # Assuming there are 10 questions question_key = f"Q{i}" answer_key = f"A{i}" question = output_json.get(question_key, '') correct_answer_key = output_json.get(answer_key, '') correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else '' # Extract options option_keys = [f"{question_key}:C{i}" for i in range(1, 6)] options = [output_json.get(key, '') for key in option_keys] # Add data row data.append([ question, # Question Text "Multiple Choice", # Question Type options[0], # Option 1 options[1], # Option 2 options[2] if len(options) > 2 else '', # Option 3 options[3] if len(options) > 3 else '', # Option 4 options[4] if len(options) > 4 else '', # Option 5 correct_answer, # Correct Answer 30, # Time in seconds '' # Image Link ]) # Create DataFrame df = pd.DataFrame(data, columns=[ "Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link" ]) # Save to Excel file excel_path = proj_dir / "quiz_questions.xlsx" df.to_excel(excel_path, index=False) return excel_path with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: def load_model(): RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') return 'Ready to Go!!' with gr.Column(scale=4): gr.HTML("""

ADWITIYA Customs Manual Quizbot

Generative AI-powered Capacity building for Training Officers

⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️
""") with gr.Column(scale=2): load_btn = gr.Button("Click to Load!🚀") load_text = gr.Textbox() load_btn.click(load_model, [], load_text) topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") with gr.Row(): radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") generate_quiz_btn = gr.Button("Generate Quiz!🚀") quiz_msg = gr.Textbox() question_radios = [gr.Radio(visible=False) for _ in range(10)] @gr.dependencies.GPU @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")], api_name="generate_quiz") def generate_quiz(question_difficulty, topic): top_k_rank = 10 RAG_db_ = RAG_db.value documents_full = RAG_db_.search(topic, k=top_k_rank) gr.Warning('Generation of Quiz may take 1 to 2 minutes. Please wait.') question_radio_list = [] excel_file = None count = 0 while count <= 3: try: documents = [item['content'] for item in documents_full] document_summaries = [f"[DOCUMENT {i + 1}]: {summary}{count}" for i, summary in enumerate(documents)] documents_str = '\n'.join(document_summaries) formatted_prompt = system_instructions(question_difficulty, topic, documents_str) print(formatted_prompt) # Use Qwen Client for quiz generation response = client.predict( query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat" ) print(response) response1 = response[1][0][1] # Find the first and last curly braces start_index = response1.find('{') end_index = response1.rfind('}') # Extract only the JSON part if start_index != -1 and end_index != -1: cleaned_response = response1[start_index:end_index + 1] # Try parsing the cleaned JSON try: output_json = json.loads(cleaned_response) print('Parsed JSON:', output_json) global quiz_data quiz_data = output_json # Generate the Excel file excel_file = json_to_excel(output_json) for question_num in range(1, 11): question_key = f"Q{question_num}" answer_key = f"A{question_num}" question = quiz_data.get(question_key) answer = quiz_data.get(quiz_data.get(answer_key)) if not question or not answer: continue choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys] radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) question_radio_list.append(radio) print('question_radio_list', question_radio_list) if len(question_radio_list) == 10: break else: print('10 questions not generated. Trying again!') count += 1 continue except json.JSONDecodeError as e: print(f"Failed to decode JSON: {e}") else: print("No valid JSON found in the response.") except Exception as e: count += 1 print(f"Exception occurred: {e}") if count == 3: print('Retry exhausted') gr.Warning('Sorry. Please try with another topic!') else: print(f"Trying again.. {count} time... please wait") continue return ['Quiz Generated!'] + question_radio_list + [excel_file] check_button = gr.Button("Check Score") score_textbox = gr.Markdown() @check_button.click(inputs=question_radios, outputs=score_textbox) def compare_answers(*user_answers): user_answer_list = list(user_answers) answers_list = [] for question_num in range(1, 20): answer_key = f"A{question_num}" answer = quiz_data.get(quiz_data.get(answer_key)) if not answer: break answers_list.append(answer) score = sum(1 for item in user_answer_list if item in answers_list) if score > 7: message = f"### Excellent! You got {score} out of 10!" elif score > 5: message = f"### Good! You got {score} out of 10!" else: message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!" return message QUIZBOT.queue() QUIZBOT.launch(debug=True)