File size: 656 Bytes
a63248d
 
 
 
 
209d195
 
a63248d
209d195
a63248d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import streamlit as st
from transformers import pipeline

sentiment_pipeline = pipeline("sentiment-analysis")

st.title("Sentiment Analysis")
st.write("Welcome sentiment analysis Spaces' built using Streamlit and Hugging Face's Transformers library. The application allows users to input a sentence and receive a real-time sentiment analysis result, along with a confidence score.")

user_input = st.text_input("Write a sentence please:")
if user_input:
    result = sentiment_pipeline(user_input)
    sentiment = result[0]["label"]
    confidence = result[0]["score"]

    st.write(f"Sentiment: {sentiment}")
    st.write(f"Confidence: {confidence:.2f}")